Interpretation The reasons why methanol and ethanol are soluble in water whereas octanol is poorly soluble have to be determined. Concept introduction: ‘Like dissolves like’ principle said that polar compounds including ionic compound should be more soluble in polar solvent. Likewise, non-polar compound should be more soluble in non-polar solvent. Other hand, compounds with similar intermolecular force capability to soluble in one another because solute-solvent interactions are similar signification to the solute-solute interaction. ‘ The set of repulsive and attractive force between molecules that result from the polarity between neighboring molecules is represented as intermolecular force. There are four types of intermolecular forces: Hydrogen bonding London dispersion force Ion – dipole force Dipole – Dipole force Hydrogen bond: Hydrogen is bonded to strong electronegative atom like oxygen, nitrogen etc.
Interpretation The reasons why methanol and ethanol are soluble in water whereas octanol is poorly soluble have to be determined. Concept introduction: ‘Like dissolves like’ principle said that polar compounds including ionic compound should be more soluble in polar solvent. Likewise, non-polar compound should be more soluble in non-polar solvent. Other hand, compounds with similar intermolecular force capability to soluble in one another because solute-solvent interactions are similar signification to the solute-solute interaction. ‘ The set of repulsive and attractive force between molecules that result from the polarity between neighboring molecules is represented as intermolecular force. There are four types of intermolecular forces: Hydrogen bonding London dispersion force Ion – dipole force Dipole – Dipole force Hydrogen bond: Hydrogen is bonded to strong electronegative atom like oxygen, nitrogen etc.
Solution Summary: The author explains that methanol and octanol are soluble in water, whereas non-polar compounds are.
Interpretation The reasons why methanol and ethanol are soluble in water whereas octanol is poorly soluble have to be determined.
Concept introduction:
‘Like dissolves like’ principle said that polar compounds including ionic compound should be more soluble in polar solvent. Likewise, non-polar compound should be more soluble in non-polar solvent. Other hand, compounds with similar intermolecular force capability to soluble in one another because solute-solvent interactions are similar signification to the solute-solute interaction.
‘ The set of repulsive and attractive force between molecules that result from the polarity between neighboring molecules is represented as intermolecular force. There are four types of intermolecular forces:
Hydrogen bonding
London dispersion force
Ion – dipole force
Dipole – Dipole force
Hydrogen bond: Hydrogen is bonded to strong electronegative atom like oxygen, nitrogen etc.
achieve.macmillanlearning.com
Canvas
EA eac
h Hulu
YouTube
G 3 methyl cyclobutanol - Google Search
Ranking Phenol Acidity
Course -236 - Organic Chemistry - Mac...
←
Assessment
Completed 10 of 22 Questions
1 +
Netflix
paramount plus
chem hw
Galdehyde reaction with grignard reagent...
b My Questions | bartleby
M Inbox - chenteislegit@gmail.com - Gmail
Due: Fri, Jan 31
Resources
Solution
Penalized
? Hint
Submit Answer
Use retrosynthetic analysis to suggest two paths to synthesize 2-methyl-3-hexanol using the Grignard reaction. (Click and drag
the appropriate image to the correct position in the reactions.)
Route 1
Aldehyde 1
or
+98
Aldehyde 2
Route 2
Q6
+100
Solved in 1 attempt
Q7
+95
Solved in 2 attempts
Q8
+98
Unlimited attempts
possible
+
+
Grignard 1
OH
H3O+
Grignard 2
Answer Bank
Q9
+90
MgBr
Unlimited attempts
possible
CH3CH2CH2MgBr
Q10
Unlimited attempts
Q11
?
?
+100
in 1 attempt
2-methyl-3-hexanol
CH3CH2MgBr
H
H
о
H
Attempt 3
2) (4 pt) After the reaction was completed, the student collected the following data. Crude
product data is the data collected after the reaction is finished, but before the product
is purified. "Pure" product data is the data collected after attempted purification using
recrystallization.
Student B's data:
Crude product data
"Pure"
product data
after
recrystallization
Crude mass: 0.93 g grey solid
Crude mp: 96-106 °C
Crude % yield:
Pure mass: 0.39 g white solid
Pure mp: 111-113 °C
Pure % yield:
a) Calculate the crude and pure percent yields for the student's reaction.
b) Summarize what is indicated by the crude and pure melting points.