Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 98E

Calculate [OH], [H+], and the pH of 0.40 M solutions of each of the following amines (the Kb values are found in Table 13-3).

a. aniline

b. methylamine

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: The pH,[H+] and [OH] of the given amines is to be calculated.

Concept introduction: The pH of a solution is defined as a figure that expresses the acidity of the alkalinity of a given solution.

The pOH of a solution is calculated by the formula, pOH=log[OH]

The sum, pH+pOH=14

At equilibrium, the equilibrium constant expression is expressed by the formula,

Kb=ConcentrationofproductsConcentrationofreactants

To determine: The pH,[H+] and [OH] of C6H5NH2 .

Answer to Problem 98E

Answer

The [OH] is 1.23×10-5M_ . The pH value is 9.09_ . The [H+] is 8.13×10-10_ .

Explanation of Solution

Explanation

The equilibrium constant expression for the given reaction is,

Kb=[C6H5NH3+][OH][C6H5NH2]

The reaction involved is,

C6H5NH2(aq)+H2O(l)C6H5NH3+(aq)+OH(aq)

At equilibrium, the equilibrium constant expression is expressed by the formula,

Kb=ConcentrationofproductsConcentrationofreactants

Where,

  • Kb is the base ionization constant.

The equilibrium constant expression for the given reaction is,

Kb=[C6H5NH3+][OH][C6H5NH2] (1)

The [OH] is 1.23×10-5M_ .

The change in concentration of C6H5NH2 is assumed to be x .

The liquid components do not affect the value of the rate constant.

The ICE table for the stated reaction is,

C6H5NH2(aq)C6H5NH3+(aq)+OH(aq)Inititialconcentration0.4000Changex+x+xEquilibriumconcentration0.40xxx

The equilibrium concentration of [C6H5NH2] is (0.40x)M .

The equilibrium concentration of [C6H5NH3+] is xM .

The equilibrium concentration of [OH] is xM .

The Kb value is given to be 3.8×1010 .

Substitute the value of Kb , [C6H5NH2] , [C6H5NH3+] and [OH] in equation (1).

3.8×1010=[x][x][0.40x]3.8×1010=[x]2[0.40x]

The value of x will be very small as compared to 0.40 . Hence, it is ignored from the term [0.40x] .

Simplify the above expression.

3.8×1010=[x]2[0.40][x]2=(1.52×1010)[x]=1.23×10-5M_

Therefore, the [OH] is 1.23×10-5M_ .

The pOH value is 4.91_ .

The pOH of a solution is calculated by the formula,

pOH=log[OH]

Substitute the value of [OH] in the above expression.

pOH=log[1.23×105]=4.91_

The pH value is 9.09_ .

The sum, pH+pOH=14

Substitute the value of pOH in the above expression.

pH+4.91=14pH=9.09_

The [H+] is 8.13×10-10_ .

The pH of a solution is calculated by the formula,

pH=log[H+]

Rearrange the above expression to calculate the value of [H+] .

[H+]=10pH

Substitute the calculated value of pH in the above expression.

[H+]=109.09=8.13×10-10_

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: The pH,[H+] and [OH] of the given amines is to be calculated.

Concept introduction: The pH of a solution is defined as a figure that expresses the acidity of the alkalinity of a given solution.

The pOH of a solution is calculated by the formula, pOH=log[OH]

The sum, pH+pOH=14

At equilibrium, the equilibrium constant expression is expressed by the formula,

Kb=ConcentrationofproductsConcentrationofreactants

To determine: The pH,[H+] and [OH] of CH3NH2 .

Answer to Problem 98E

Answer

The [OH] is 1.3×10-2M_ . The pH value is 12.11_ . The [H+] is 7.76×10-13_ .

Explanation of Solution

Explanation

The equilibrium constant expression for the given reaction is,

Kb=[CH3NH3+][OH][CH3NH2]

The reaction involved is,

CH3NH2(aq)+H2O(l)CH3NH3+(aq)+OH(aq)

At equilibrium, the equilibrium constant expression is expressed by the formula,

Kb=ConcentrationofproductsConcentrationofreactants

Where,

  • Kb is the base dissociation constant.

The equilibrium constant expression for the given reaction is,

Kb=[CH3NH3+][OH][CH3NH2] (1)

The [OH] is 1.3×10-2M_ .

The change in concentration of C6H5NH2 is assumed to be x .

The liquid components do not affect the value of the rate constant.

The ICE table for the stated reaction is,

CH3NH2(aq)CH3NH3+(aq)+OH(aq)Inititialconcentration0.4000Changex+x+xEquilibriumconcentration0.40xxx

The equilibrium concentration of [CH3NH2] is (0.40x)M .

The equilibrium concentration of [CH3NH3+] is xM .

The equilibrium concentration of [OH] is xM .

The given Kb value is given to be 4.38×104 .

Substitute the value of Kb , [CH3NH2] , [CH3NH3+] and [OH] in equation (1).

4.38×104=[x][x][0.40x]4.38×104=[x]2[0.40x]

The value of x will be very small as compared to 0.40 . Hence, it is ignored from the term [0.40x] .

Simplify the above expression.

4.38×104=[x]2[0.40][x]2=(1.752×104)[x]=1.3×10-2M_

Therefore, the [OH] is 1.3×10-2M_ .

The pOH value is 1.89_ .

The pOH of a solution is calculated by the formula,

pOH=log[OH]

Substitute the value of [OH] in the above expression.

pOH=log[1.3×102]=1.89_

The pH value is 12.11_ .

The sum, pH+pOH=14

Substitute the value of pOH in the above expression.

pH+1.89=14pH=12.11_

The [H+] is 7.76×10-13_ .

The pH of a solution is calculated by the formula,

pH=log[H+]

Rearrange the above expression to calculate the value of [H+] .

[H+]=10pH

Substitute the calculated value of pH in the above expression.

[H+]=1012.11=7.76×10-13_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT
Please correct answer and don't used hand raiting

Chapter 13 Solutions

Chemistry: An Atoms First Approach

Ch. 13 - Prob. 1ALQCh. 13 - Differentiate between the terms strength and...Ch. 13 - Sketch two graphs: (a) percent dissociation for...Ch. 13 - Prob. 4ALQCh. 13 - Prob. 5ALQCh. 13 - Prob. 6ALQCh. 13 - Prob. 7ALQCh. 13 - Prob. 8ALQCh. 13 - Consider a solution formed by mixing 100.0 mL of...Ch. 13 - Prob. 10ALQCh. 13 - Prob. 11ALQCh. 13 - Prob. 12ALQCh. 13 - What is meant by pH? True or false: A strong acid...Ch. 13 - Prob. 14ALQCh. 13 - Prob. 15ALQCh. 13 - Prob. 16ALQCh. 13 - Prob. 17ALQCh. 13 - The salt BX, when dissolved in water, produces an...Ch. 13 - Anions containing hydrogen (for example, HCO3 and...Ch. 13 - Prob. 20QCh. 13 - Prob. 21QCh. 13 - Prob. 22QCh. 13 - Prob. 23QCh. 13 - Prob. 24QCh. 13 - Prob. 25QCh. 13 - The following are representations of acidbase...Ch. 13 - Prob. 27QCh. 13 - Prob. 28QCh. 13 - Prob. 29QCh. 13 - Prob. 30QCh. 13 - Prob. 31QCh. 13 - Prob. 32QCh. 13 - Prob. 33QCh. 13 - Prob. 34QCh. 13 - Write balanced equations that describe the...Ch. 13 - Write the dissociation reaction and the...Ch. 13 - Prob. 37ECh. 13 - For each of the following aqueous reactions,...Ch. 13 - Classify each of the following as a strong acid or...Ch. 13 - Consider the following illustrations: Which beaker...Ch. 13 - Use Table 13-2 to order the following from the...Ch. 13 - Prob. 42ECh. 13 - Prob. 43ECh. 13 - Prob. 44ECh. 13 - Prob. 45ECh. 13 - Prob. 46ECh. 13 - Values of Kw as a function of temperature are as...Ch. 13 - At 40.C the value of Kw is 2.92 1014. a....Ch. 13 - Calculate the pH and pOH of the solutions in...Ch. 13 - Calculate [H+] and [OH] for each solution at 25C....Ch. 13 - Prob. 51ECh. 13 - Fill in the missing information in the following...Ch. 13 - The pH of a sample of gastric juice in a persons...Ch. 13 - The pOH of a sample of baking soda dissolved in...Ch. 13 - What are the major species present in 0.250 M...Ch. 13 - A solution is prepared by adding 50.0 mL of 0.050...Ch. 13 - Calculate the pH of each of the following...Ch. 13 - Calculate the pH of each of the following...Ch. 13 - Calculate the concentration of an aqueous HI...Ch. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - A solution is prepared by adding 50.0 mL...Ch. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Calculate the concentration of all species present...Ch. 13 - Calculate the percent dissociation for a 0.22-M...Ch. 13 - For propanoic acid (HC3H5O2, Ka = 1.3 105),...Ch. 13 - A solution is prepared by dissolving 0.56 g...Ch. 13 - Monochloroacetic acid, HC2H2ClO2, is a skin...Ch. 13 - A typical aspirin tablet contains 325 mg...Ch. 13 - Calculate the pH of a solution that contains 1.0 M...Ch. 13 - Prob. 72ECh. 13 - Calculate the percent dissociation of the acid in...Ch. 13 - Prob. 74ECh. 13 - A 0.15-M solution of a weak acid is 3.0%...Ch. 13 - An acid HX is 25% dissociated in water. If the...Ch. 13 - Trichloroacetic acid (CCl3CO2H) is a corrosive...Ch. 13 - The pH of a 0.063-M solution of hypobromous acid...Ch. 13 - A solution of formic acid (HCOOH, Ka = 1.8 104)...Ch. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - You have 100.0 g saccharin, a sugar substitute,...Ch. 13 - Write the reaction and the corresponding Kb...Ch. 13 - Write the reaction and the corresponding Kb...Ch. 13 - Prob. 85ECh. 13 - Use Table 13-3 to help order the following acids...Ch. 13 - Use Table 13-3 to help answer the following...Ch. 13 - Prob. 88ECh. 13 - Calculate the pH of the following solutions. a....Ch. 13 - Calculate [OH], pOH, and pH for each of the...Ch. 13 - Prob. 91ECh. 13 - Prob. 92ECh. 13 - What mass of KOH is necessary to prepare 800.0 mL...Ch. 13 - Calculate the concentration of an aqueous Sr(OH)2...Ch. 13 - Prob. 95ECh. 13 - For the reaction of hydrazine (N2H4) in water,...Ch. 13 - Calculate [OH], [H+], and the pH of 0.20 M...Ch. 13 - Calculate [OH], [H+], and the pH of 0.40 M...Ch. 13 - Calculate the pH of a 0.20-M C2H5NH2 solution (Kb...Ch. 13 - Prob. 100ECh. 13 - What is the percent ionization in each of the...Ch. 13 - Prob. 102ECh. 13 - The pH of a 0.016-M aqueous solution of...Ch. 13 - Calculate the mass of HONH2 required to dissolve...Ch. 13 - Prob. 105ECh. 13 - Prob. 106ECh. 13 - Prob. 107ECh. 13 - Arsenic acid (H3AsO4) is a triprotic acid with Ka1...Ch. 13 - Prob. 109ECh. 13 - Calculate [CO32] in a 0.010-M solution of CO2 in...Ch. 13 - Prob. 111ECh. 13 - Calculate the pH of a 5.0 103-M solution of...Ch. 13 - Arrange the following 0.10 M solutions in order of...Ch. 13 - Prob. 114ECh. 13 - Prob. 115ECh. 13 - The Kb values for ammonia and methylamine are 1.8 ...Ch. 13 - Determine [OH], [H+], and the pH of each of the...Ch. 13 - Calculate the concentrations of all species...Ch. 13 - Prob. 119ECh. 13 - Prob. 120ECh. 13 - Prob. 121ECh. 13 - Papaverine hydrochloride (abbreviated papH+Cl;...Ch. 13 - An unknown salt is either NaCN, NaC2H3O2, NaF,...Ch. 13 - Prob. 124ECh. 13 - A 0.050-M solution of the salt NaB has a pH of...Ch. 13 - Prob. 126ECh. 13 - Prob. 127ECh. 13 - Prob. 128ECh. 13 - Are solutions of the following salts acidic,...Ch. 13 - Prob. 130ECh. 13 - Prob. 131ECh. 13 - Prob. 132ECh. 13 - Place the species in each of the following groups...Ch. 13 - Prob. 134ECh. 13 - Will the following oxides give acidic, basic, or...Ch. 13 - Prob. 136ECh. 13 - Prob. 137ECh. 13 - Prob. 138ECh. 13 - Prob. 139ECh. 13 - Zinc hydroxide is an amphoteric substance. Write...Ch. 13 - Prob. 141ECh. 13 - Prob. 142ECh. 13 - Prob. 143AECh. 13 - Prob. 144AECh. 13 - A solution is tested for pH and conductivity as...Ch. 13 - The pH of human blood is steady at a value of...Ch. 13 - Prob. 147AECh. 13 - Prob. 148AECh. 13 - Prob. 149AECh. 13 - Prob. 150AECh. 13 - Acrylic acid (CH29CHCO2H) is a precursor for many...Ch. 13 - Prob. 152AECh. 13 - Prob. 153AECh. 13 - Prob. 154AECh. 13 - Prob. 155AECh. 13 - Prob. 156AECh. 13 - Prob. 157AECh. 13 - Prob. 158AECh. 13 - Prob. 159AECh. 13 - Prob. 160AECh. 13 - Prob. 161AECh. 13 - For solutions of the same concentration, as acid...Ch. 13 - Prob. 163CWPCh. 13 - Consider a 0.60-M solution of HC3H5O3, lactic acid...Ch. 13 - Prob. 165CWPCh. 13 - Prob. 166CWPCh. 13 - Consider 0.25 M solutions of the following salts:...Ch. 13 - Calculate the pH of the following solutions: a....Ch. 13 - Prob. 169CWPCh. 13 - Prob. 170CPCh. 13 - Prob. 171CPCh. 13 - Prob. 172CPCh. 13 - Prob. 173CPCh. 13 - Prob. 174CPCh. 13 - Calculate the pH of a 0.200-M solution of C5H5NHF....Ch. 13 - Determine the pH of a 0.50-M solution of NH4OCl....Ch. 13 - Prob. 177CPCh. 13 - Prob. 178CPCh. 13 - Consider 1000. mL of a 1.00 104-M solution of a...Ch. 13 - Calculate the mass of sodium hydroxide that must...Ch. 13 - Prob. 181CPCh. 13 - Prob. 182CPCh. 13 - Will 0.10 M solutions of the following salts be...Ch. 13 - Prob. 184CPCh. 13 - A 0.100-g sample of the weak acid HA (molar mass =...Ch. 13 - Prob. 186CPCh. 13 - A 2.14 g sample of sodium hypoiodite is dissolved...Ch. 13 - Isocyanic acid (HNCO) can be prepared by heating...Ch. 13 - Prob. 189IPCh. 13 - An aqueous solution contains a mixture of 0.0500 M...Ch. 13 - Prob. 191MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY