Physics
Physics
3rd Edition
ISBN: 9781259233616
Author: GIAMBATTISTA
Publisher: MCG
Question
Book Icon
Chapter 13, Problem 85P

(a)

To determine

The average distance between Ping-Pong balls at any instant.

(a)

Expert Solution
Check Mark

Answer to Problem 85P

Average distance of separation is 52cm.

Explanation of Solution

Diameter of ball is 3.75cm and diameter of N2 molecule is 0.30nm.

It is assumed that the N2 molecules are located at the centre of a sphere.

Write the equation to find the average distance of separation between Ping-Pong balls at any instant.

dav=adn2 (I)

Here, dav is the average distance between Ping –Pong balls (same as diameter of spheres), a is the scale factor, and dn2 is the separation between N2 molecules.

Write the equation for a.

a=dpingdn2 (I)

Here, dping is the diameter of Ping-Pong balls.

Write the equation for each ping pong ball.

VN=16πdav3

Here, V is the total volume occupied by spheres and N is the Avogadro number.

Rewrite the above relation in terms of dav.

dav=(6VπN)1/3 (II)

Rewrite equation (I) by substituting equations (II) and (III).

dav=(dpingdn2)(6VπN)1/3

Conclusion:

Substitute 3.75cm for dping, 0.30nm for dn2, 0.0224m3 for V, and 6.022×1023 for N in the above equation to find dav.

dav=(3.75cm(102m1cm)0.30nm(109m1nm))(6(0.0224m3)π(6.022×1023))1/3=(12.5×107)(0.0416×107m)=0.52m(102cm1m)=52cm

Therefore, the average distance of separation is 52cm.

(b)

To determine

The average distance travelled by Ping-Pong balls before collision with one another.

(b)

Expert Solution
Check Mark

Answer to Problem 85P

Average distance travelled is 12m.

Explanation of Solution

Diameter of ball is 3.75cm and diameter of N2 molecule is 0.30nm.

It is assumed that the N2 molecules are located at the centre of a sphere.

Write the equation for mean free path.

Λ=12πdn22(N/V)

Here,Λ is the mean free path.

Write the relation between N/V and pressure.

NV=PKBT

Here, KB is the Boltzmann constant, T is the temperature, and P is the pressure.

Rewrite the equation for Λ by substituting the above relation.

Λ=12πdn22(PKBT)=KBT2πdn22P

Write the average distance travelled by Ping-Pong balls before collision with one another.

dcol=aΛ

Here, dcol is the average distance travelled by Ping-Pong balls before collision with one another.

Rewrite the above relation by substituting P2πdn22KBT for Λ.

dcol=aKBT2πdn22P

Rewrite the above relation by substituting equation (I).

dcol=(dpingdn2)KBT2πdn22P

Conclusion:

Substitute 3.75cm for dping, 0.30nm for dn2, 1.38×1023J/K for KB, 273.15K+0.0K for T, 3.14 for π, 0.30nm for dn2, and 1.00atm for P in the above equation to find dcol.

dcol=(3.75cm(102m1cm)0.30nm(109m1nm))(1.38×1023J/K)(273.15K+0.0K)2(3.14)(0.30nm(109m1nm))(1.00atm(1.013×105Pa/atm1.00atm))=14.13×1023Jm1.18×11023J=12m

Therefore, the average distance travelled is 12m.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.
A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.
For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=

Chapter 13 Solutions

Physics

Ch. 13.6 - Prob. 13.7PPCh. 13.7 - Prob. 13.8PPCh. 13.8 - Prob. 13.9PPCh. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 16CQCh. 13 - Prob. 17CQCh. 13 - Prob. 18CQCh. 13 - Prob. 19CQCh. 13 - Prob. 20CQCh. 13 - Prob. 1MCQCh. 13 - Prob. 2MCQCh. 13 - Prob. 3MCQCh. 13 - Prob. 4MCQCh. 13 - Prob. 5MCQCh. 13 - Prob. 6MCQCh. 13 - Prob. 7MCQCh. 13 - Prob. 8MCQCh. 13 - Prob. 9MCQCh. 13 - Prob. 10MCQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Prob. 17PCh. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20PCh. 13 - Prob. 21PCh. 13 - 22. A copper washer is to be fit in place over a...Ch. 13 - 23. Repeat Problem 22, but now the copper washer...Ch. 13 - Prob. 24PCh. 13 - Prob. 25PCh. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 63PCh. 13 - Prob. 64PCh. 13 - Prob. 65PCh. 13 - Prob. 66PCh. 13 - Prob. 67PCh. 13 - Prob. 68PCh. 13 - Prob. 69PCh. 13 - Prob. 70PCh. 13 - Prob. 71PCh. 13 - Prob. 72PCh. 13 - Prob. 73PCh. 13 - Prob. 74PCh. 13 - Prob. 75PCh. 13 - Prob. 76PCh. 13 - Prob. 77PCh. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 83PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - Prob. 86PCh. 13 - Prob. 87PCh. 13 - Prob. 88PCh. 13 - Prob. 89PCh. 13 - Prob. 90PCh. 13 - Prob. 91PCh. 13 - Prob. 92PCh. 13 - Prob. 93PCh. 13 - Prob. 94PCh. 13 - Prob. 95PCh. 13 - Prob. 96PCh. 13 - Prob. 97PCh. 13 - Prob. 98PCh. 13 - Prob. 99PCh. 13 - Prob. 100PCh. 13 - Prob. 101PCh. 13 - Prob. 102PCh. 13 - Prob. 103PCh. 13 - Prob. 104PCh. 13 - Prob. 105PCh. 13 - Prob. 106PCh. 13 - Prob. 107PCh. 13 - Prob. 108PCh. 13 - Prob. 109PCh. 13 - Prob. 110PCh. 13 - Prob. 111PCh. 13 - Prob. 112PCh. 13 - 113. A long, narrow steel rod of length 2.5000 m...Ch. 13 - Prob. 114PCh. 13 - Prob. 115PCh. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - Prob. 120P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON