(a)
Average unit cost for operating a standard vehicle on a level roadway.
Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for operating a standard vehicle on a level roadway is as follows:
Let the depreciation cost per mile as
Let the registration and insurance cost per mile as
Let the maintenance cost per mile as
Let the fuel cost per mile as
The total cost required per mile by adding all the costs.
Total cost required per mile
Total cost required per mile
Conclusion:
Therefore, the average cost required for operating a standard vehicle on a level roadway is
(b)
Average unit cost for travel time for a truck.
Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for travel time for a truck.
Let the cost required per mile to operate the truck as
For the total unit costs using the relation
Substituting the values, we get
Substitute the value of
Let the average speed be
Substitute
Conclusion:
Therefore, the estimate average unit cost for travel time for a truck is
(c)
Average unit cost for single-vehicle property damage.
Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for single-vehicle property damage.
Substituting the values, we have
Conclusion:
Therefore, the average unit cost forsingle-vehicle property damage is
(d)
Average unit cost for personal injury.
Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for personal injury.
Let the cost for X-ray be equal to
Let the cost for emergency to be equal to
Conclusion:
Therefore, the average unit cost for personal injury is
(e)
The average unit cost for fatality.
Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for fatality.
It varies from $100,000 to $4.5 million.
Want to see more full solutions like this?
Chapter 13 Solutions
Traffic And Highway Engineering
- I need detailed help solving this exercise from homework of Applied Mechanics.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forward
- Direction: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forwardDirection: Write the answer in a bond paper with complete solutions drawings. Strictly write in bond paper and picture it. Topic: Sheer & Moment diagrams, Reaction at Supports, Load Tracing, Method of Joint, and Method of Section Course: Theory Of Structurearrow_forward
- 1. Create Diagrams: Draw the shear and moment diagrams for the given beam. 8k 15k-ft B 12 k -6 ft- -8 ft--8 ft- -8 ft- 4k 4 ft 2 ftarrow_forward10:46 Mechanics of Deform... ← CE104.2T.24.25. FA 1 5 of 6 2.5/10 Rigid bar ABCD is loaded and supported as shown. Steel [E=27800 ksi] bars (1) and (2) are unstressed before the load P is applied. Bar (1) has a cross- sectional area of 0.83 in.² and bar (2) has a cross- sectional area of 0.45 in.2. After load P is applied, the strain in bar (1) is found to be 670 με. Assume L₁=58 in., L2-94 in., a=26 in., b=22 in., and c=36 in. Determine: (a) the stresses in bars (1) and (2). (b) the vertical deflection VD of point D on the rigid bar. (c) the load P. A L₁ B L2 a b 223 D Stream Courses Calendar Morearrow_forwardanswer thisarrow_forward
- exact answerarrow_forwardQ2: For the overhanging beam BD shown, draw the "Influence Lines" for RB, RD S.F. at C (VC) and B.M. at C (Mc) using the static equilibrium method. A B 4 m 5 m 7 marrow_forwardQ1: Draw N.F.D, S.F.D and B.M.D for the frame shown below. Knowing that t support at A is hinge, and at D is roller. B 2 m 5 kN/m C 30 kN 2 D 5 marrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,