Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
10th Edition
ISBN: 9781305957510
Author: ZUMDAHL, Steven S.; Zumdahl, Susan A.; DeCoste, Donald J.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 72E
Solid NH4HS decomposes by the following endothermic process:
NH4HS(s) ⇋ NH3(g) + H2S(g)
- a. What effect will adding more NH3(g) have on the equilibrium?
- b. What effect will adding more NH4HS(s) have on the equilibrium?
- c. What effect will increasing the volume of the container have on the equilibrium?
- d. What effect will decreasing the temperature have on the equilibrium?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 13 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
Ch. 13 - Characterize a system at chemical equilibrium with...Ch. 13 - What is the law of mass action? Is it true that...Ch. 13 - Consider the following reactions at some...Ch. 13 - What is the difference between K and Kp? When doc...Ch. 13 - What are homogeneous equilibria? Heterogeneous...Ch. 13 - Distinguish between the terms equilibrium constant...Ch. 13 - Summarize the steps for solving equilibrium...Ch. 13 - A common type of reaction we will study is that...Ch. 13 - What is Le Chteliers principle? Consider the...Ch. 13 - The only stress (change) that also changes the...
Ch. 13 - Consider an equilibrium mixture of four chemicals...Ch. 13 - The boxes shown below represent a set of initial...Ch. 13 - For the reactionH2(g)+I2(g)2HI(g), consider two...Ch. 13 - Given the reactionA(g)+B(g)C(g)+D(g), consider the...Ch. 13 - Consider the reaction A(g)+2B(g)C(g)+D(g) in a...Ch. 13 - Consider the reactionA(g)+B(g)C(g)+D(g). A friend...Ch. 13 - Consider the following statements: Consider the...Ch. 13 - Le Chteliers principle is stated (Section 12-7) as...Ch. 13 - The value of the equilibrium constant K depends on...Ch. 13 - In Section 13.1 of your text, it is mentioned that...Ch. 13 - Explain why the development of a vapor pressure...Ch. 13 - Consider an initial mixture of N2 and H2 gases...Ch. 13 - Consider the following reaction:...Ch. 13 - Consider the same reaction as in Question 11. In...Ch. 13 - Suppose a reaction has the equilibrium constant K...Ch. 13 - Suppose a reaction has the equilibrium constant K...Ch. 13 - Consider the following reaction at some...Ch. 13 - Consider the following generic reaction:...Ch. 13 - Explain the difference between K, Kp, and Q.Ch. 13 - Consider the following reactions:...Ch. 13 - For a typical equilibrium problem, the value of K...Ch. 13 - Which of the following statements is(are) true?...Ch. 13 - Consider the reaction 2N2O(g) + O2(g) 4NO(g)...Ch. 13 - The reaction to prepare methanol from carbon...Ch. 13 - Write the equilibrium expression (K) for each of...Ch. 13 - Write the equilibrium expression (Kp) for each...Ch. 13 - At a given temperature, K = 1.3 102 for the...Ch. 13 - For the reaction H2(g)+Br2(g)2HBr(g) Kp = 3.5 104...Ch. 13 - For the reaction 2NO(g)+2H2(g)N2(g)+2H2O(g) it is...Ch. 13 - At high temperatures, elemental nitrogen and...Ch. 13 - At a particular temperature, a 3.0-L flask...Ch. 13 - At a particular temperature a 2.00-L flask at...Ch. 13 - The following equilibrium pressures at a certain...Ch. 13 - The following equilibrium pressures were observed...Ch. 13 - At 327c, the equilibrium concentrations are...Ch. 13 - At 1100 K, Kp = 0.25 for the reaction...Ch. 13 - Write expressions for K and Kp for the following...Ch. 13 - Write expressions for Kp for the following...Ch. 13 - For which reactions in Exercise 33 is Kp equal to...Ch. 13 - For which reactions in Exercise 34 is Kp equal to...Ch. 13 - The formation of glucose from water and carbon...Ch. 13 - Consider the following reaction at a certain...Ch. 13 - In a study of the reaction...Ch. 13 - Consider the following reaction at 725C: C(s)+...Ch. 13 - The equilibrium constant is 0.0900 at 25C for the...Ch. 13 - Ethyl acetate is synthesized in a nonreacting...Ch. 13 - For the reaction 2H2O(g)2H2(g)+O2(g) K = 2.4 103...Ch. 13 - The reaction 2NO(g)+Br2(g)2NOBr(g) has Kp = 109 at...Ch. 13 - A 1.00-L flask was filled with 2.00 moles of...Ch. 13 - A sample of S8(g) is placed in an otherwise empty...Ch. 13 - At a particular temperature, 12.0 moles of SO3 is...Ch. 13 - At a particular temperature, 8.0 moles of NO2 is...Ch. 13 - An initial mixture of nitrogen gas and hydrogen...Ch. 13 - Nitrogen gas (N2) reacts with hydrogen gas (H2) to...Ch. 13 - At a particular temperature, K = 3.75 for the...Ch. 13 - At 2200C, Kp = 0.050 for the reaction...Ch. 13 - At 25c, K = 0.090 for the reaction...Ch. 13 - At 1100 K, KP = 0.25 for the reaction...Ch. 13 - At a particular temperature, Kp = 0.25 for the...Ch. 13 - At 35C, K = 1.6 105 for the reaction...Ch. 13 - At o particular temperature, K = 4 .0 107 for the...Ch. 13 - At a particular temperature, K = 2.0 106 for the...Ch. 13 - Lexan is a plastic used to make compact discs,...Ch. 13 - At 25C, Kp. = 2.9 103 for the reaction...Ch. 13 - A sample of solid ammonium chloride was placed in...Ch. 13 - Suppose the reaction system...Ch. 13 - Solid NH4HS decomposes by the following...Ch. 13 - For the following reactions, predict whether the...Ch. 13 - Predict the shift in the equilibrium position that...Ch. 13 - An important reaction in the commercial production...Ch. 13 - What will happen to the number of moles of SO3 in...Ch. 13 - In which direction will the position of the...Ch. 13 - Hydrogen for use in ammonia production is produced...Ch. 13 - Old-fashioned smelling salts consist of ammonium...Ch. 13 - Ammonia is produced by the Haber process, in which...Ch. 13 - Prob. 81AECh. 13 - Given the following equilibrium constants at...Ch. 13 - Consider the decomposition of the compound C5H6O3...Ch. 13 - At 25C. Kp 1 1031 for the reaction a. Calculate...Ch. 13 - The gas arsine, AsH3, decomposes as follows:...Ch. 13 - At a certain temperature, K = 9.1 10-4 for the...Ch. 13 - At a certain temperature, K = 1.1 l03 for the...Ch. 13 - For the reaction PCl5(g)PCl3(g)+Cl2(g) at 600. K,...Ch. 13 - At 25C, gaseous SO2Cl2 decomposes to SO2(g) and...Ch. 13 - For the following reaction at a certain...Ch. 13 - Novelty devices for predicting rain contain...Ch. 13 - Consider the reaction Fe3+(aq)+SCN(aq)FeSCN2+(aq)...Ch. 13 - Chromium(VI) forms two different oxyanions, the...Ch. 13 - Prob. 94AECh. 13 - Suppose K = 4.5 103 at a certain temperature for...Ch. 13 - For the reaction below, Kp = 1.16 at 800C....Ch. 13 - Many sugars undergo a process called mutarotation,...Ch. 13 - Peptide decomposition is one of the key processes...Ch. 13 - Methanol, a common laboratory solvent, poses a...Ch. 13 - At a particular temperature, K = 1.00 102 for the...Ch. 13 - An equilibrium mixture contains 0.60 g solid...Ch. 13 - At a particular temperature, 8.1 moles of NO2 gas...Ch. 13 - A sample of solid ammonium chloride was placed in...Ch. 13 - In a given experiment, 5.2 moles of pure NOCl was...Ch. 13 - For the reactionN2O4(g)2NO2(g),Kp=0.25 at a...Ch. 13 - Consider the following exothermic reaction at...Ch. 13 - For the following endothermic reaction at...Ch. 13 - A 1.604-g sample of methane (CH4) gas and 6.400 g...Ch. 13 - A 4.72-g sample of methanol (CH3OH) was placed in...Ch. 13 - At 35C, K = 1.6 105 for the reaction...Ch. 13 - Nitric oxide and bromine at initial partial...Ch. 13 - At 25C. Kp = 5.3 105 for the reaction...Ch. 13 - Consider the reaction P4(g)2P2(g) where Kp = 1.00 ...Ch. 13 - The partial pressures of an equilibrium mixture of...Ch. 13 - At 125C, KP = 0.25 for the reaction...Ch. 13 - A mixture of N2, H2, and NH3 is at equilibrium...Ch. 13 - Consider the decomposition equilibrium for...Ch. 13 - An 8.00-g sample of SO3 was placed in an evacuated...Ch. 13 - A sample of iron(II) sulfate was heated in an...Ch. 13 - Prob. 121CPCh. 13 - A sample of N2O4(g) is placed in an empty cylinder...Ch. 13 - A sample of gaseous nitrosyl bromide (NOBr) was...Ch. 13 - The equilibrium constant Kp for the reaction...Ch. 13 - For the reaction NH3(g)+H2S(g)NH4HS(s) K = 400. at...Ch. 13 - Given K = 3.50 at 45C for the reaction...Ch. 13 - In a solution with carbon tetrachloride as the...Ch. 13 - The hydrocarbon naphthalene was frequently used in...Ch. 13 - A gaseous material XY(g) dissociates to some...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- . For the reaction 3O2(g)2O3(g)The equilibrium constant, K, has the value 1.121054at a particular temperature. a. What does the very small equilibrium constant indicate about the extent to which oxygen gas, O2(g), is converted to ozone gas, O3(g), at this temperature? b. If the equilibrium mixture is analyzed and [O2(g)]is found to be 3.04102M, what is the concentration of O3(g) in the mixture’?arrow_forwardThe decomposition of NH4HS, NH 4 HS( s )NH3( g )+ H 2 S( g ) is an endothermic process. Using Le Chatelier's principle, explain how increasing the temperature would affect the equilibrium. If more NH4HS is added to a flask in which this equilibrium exists, how is the equilibrium affected? What if some additional NH3 is placed in the flask? What will happen to the pressure of NH3 if some H2S is removed from the flask?arrow_forwardConsider the following equilibrium: COBr2(g) CO(g) + Br2(g)Kc = 0.190 at 73 C (a) A 0.50 mol sample of COBr2 is transferred to a 9.50-L flask and heated until equilibrium is attained. Calculate the equilibrium concentrations of each species. (b) The volume of the container is decreased to 4.5 L and the system allowed to return to equilibrium. Calculate the new equilibrium concentrations. (Hint: The calculation will be easier if you view this as a new problem with 0.5 mol of COBr2 transferred to a 4.5-L flask.) (c) What is the effect of decreasing the container volume from 9.50 L to 4.50 L?arrow_forward
- . Consider an equilibrium mixture consisting of H2O(g), CO(g). H2(g), and CO2(g) reacting in a closed vessel according to the equation H2O(g)+CO(g)H2(g)+CO2(g)a. You add more H2O to the flask. How does the new equilibrium concentration of each chemical compare to its origin al equilibrium concentration after equilibrium is re-established? Justify your answer. b. You add more H2to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forwardHow does equilibrium represent the balancing of opposing processes? Give an example of an “equilibrium” encountered in everyday life, showing how the processes involved oppose each other.arrow_forwardConsider an equilibrium mixture of four chemicals (A. B. C. and D. all gases) reacting in a closed flask according to the following equation: A+BC+Da. You add more A to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer. h. You have the original set-up at equilibrium, and add more D to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forward
- In Section 13.1 of your text, it is mentioned that equilibrium is reached in a closed system. What is meant by the term closed system. and why is it necessary to have a closed system in order for a system to reach equilibrium? Explain why equilibrium is not reached in an open system.arrow_forwardPhosphorus pentachloride decomposes at elevated temperatures. PCl5(g) PCl3(g) + Cl2(g) An equilibrium mixture at some temperature consists of 3.120 g of PCl5, 3.845 g of PCl3, and 1.787 g of Cl2 in a 10.0-L flask. If you add 1.418 g of Cl2, how will the equilibrium be affected? What will the concentrations of PCl5, PCl3, and Cl2 be when equilibrium is reestablished?arrow_forwardAt room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forward
- 12.100 A reaction important in smog formation is O3(g)+NO(g)O2(g)+NO2(g)K=6.01034 (a) If the initial concentrations are [O3]=1.0106M,[NO]=1.0105M,[NO2]=2.5104M, and [O2]=8.2103M , is the system at equilibrium? If not, in which direction does the reaction proceed? (b) If the temperature is increased, as on a very warm day, will the concentrations of the products increase or decrease? (HINT: You may have to calculate the enthalpy change for the reaction to find out if it is exothermic or endothermic.)arrow_forwardWhen writing a chemical equation for a reaction that comes to equilibrium. how do we indicate symbolically that the reaction is reversible?arrow_forwardThe decomposition of NH4HS NH4HS(s) NH3(g) + H2S(g) is an endothermic process. Using Le Chateliers principle, explain how increasing the temperature would affect the equilibrium. If more NH4HS is added to a flask in which this equilibrium exists, how is the equilibrium affected? What if some additional NH3 is placed in the flask? What will happen to the pressure of NH3 if some H2S is removed from the flask?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY