Le Châtelier’s principle is stated (Section 12-7) as follows: “If a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change.” The system N 2 ( g ) + 3 H 2 ( g ) ⇌ 2 NH 3 ( g ) is used as an example in which the addition of nitrogen gas at equilibrium results in a decrease in H 2 concentration and an increase in NH 3 , concentration. In the experiment the volume is assumed to be constant. On the other hand, if N 2 is added to the reaction system in a container with a piston so that the pressure can be held constant, the amount o f NH 3 actually could decrease, and the concentration of H 2 would increase as equilibrium is reestablished. Explain how this can happen. Also, if you consider this same system at equilibrium, the addition of an inert gas. holding the pressure constant, does affect the equilibrium position. Explain why the addition of an inert gas to this system in a rigid container does not affect the equilibrium position.
Le Châtelier’s principle is stated (Section 12-7) as follows: “If a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change.” The system N 2 ( g ) + 3 H 2 ( g ) ⇌ 2 NH 3 ( g ) is used as an example in which the addition of nitrogen gas at equilibrium results in a decrease in H 2 concentration and an increase in NH 3 , concentration. In the experiment the volume is assumed to be constant. On the other hand, if N 2 is added to the reaction system in a container with a piston so that the pressure can be held constant, the amount o f NH 3 actually could decrease, and the concentration of H 2 would increase as equilibrium is reestablished. Explain how this can happen. Also, if you consider this same system at equilibrium, the addition of an inert gas. holding the pressure constant, does affect the equilibrium position. Explain why the addition of an inert gas to this system in a rigid container does not affect the equilibrium position.
Solution Summary: The author explains the observation of the given experiment and the effect of addition of inert gas at constant pressure and constant volume.
Le Châtelier’s principle is stated (Section 12-7) as follows: “If a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change.” The system
N
2
(
g
)
+
3
H
2
(
g
)
⇌
2
NH
3
(
g
)
is used as an example in which the addition of nitrogen gas at equilibrium results in a decrease in H2 concentration and an increase in NH3, concentration. In the experiment the volume is assumed to be constant. On the other hand, if N2 is added to the reaction system in a container with a piston so that the pressure can be held constant, the amount o f NH3 actually could decrease, and the concentration of H2 would increase as equilibrium is reestablished. Explain how this can happen. Also, if you consider this same system at equilibrium, the addition of an inert gas. holding the pressure constant, does affect the equilibrium position. Explain why the addition of an inert gas to this system in a rigid container does not affect the equilibrium position.
need help not sure what am doing wrong step by step please answer is 971A
During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration.
What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
Influence of salt concentrations on electrostatic interactions 2
Answer is 2.17A why not sure step by step please
What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
The name of the following molecule is:
Ν
Chapter 13 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.