Concept explainers
A tank contains a mixture of

Interpretation:
The partial pressure of oxygen and carbon dioxide gas should be calculated.
Concept Introduction:
Dalton’s law of partial pressure: In a container for mixture of gases, the total pressure is equal to the sum of partial pressures of all the gases present in the container. The partial pressure is the pressure exerted by a gas if it is the only gas present in the container.
Let a mixture of three gases with partial pressures
This is the Dalton’s law of partial pressure.
The behaviour of gases is assumed to be ideal thus, partial pressure of gases can be calculated from an ideal gas equation as follows:
Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature of the gas.
The pressure exerted by an ideal gas depends on the number of gas particles, this does not depend on the nature of particles of gas. The two important things concluded from it will be:
- The volume of gases is important.
- The forces in between the particles of gas is not important.
Answer to Problem 69QAP
4.84 atm and 4.37 atm.
Explanation of Solution
Calculation:
First calculate the number of moles of each gas as follows:
Since, molar mass of O2 is 32 g/mol thus, number of moles will be:
Similarly, molar mass of
Thus, total number of moles will be:
Putting the values,
From total pressure and number of moles, volume can be calculated using the ideal gas equation as follows:
First convert the temperature from
Thus,
Putting the values,
Thus,
Now from volume, partial pressure of gases can be calculated from ideal gas equation as follows:
Putting the values,
Similarly, partial pressure of
Putting the values,
Thus, partial pressure of oxygen and carbon dioxide gas is 4.84 atm and 4.37 atm respectively.
Want to see more full solutions like this?
Chapter 13 Solutions
INTRODUCTORY CHEMISTRY
- please helparrow_forwardPredict the products of the following reactions. Draw mechanism arrows for each step for a, b, and c. a.) HBr b.) HI H₂O H2SO4 d.) C12 HO H2SO4 1.) BH3 2.) H2O2, NaOHarrow_forwardK for the following reaction is 0.11 at constant temperature. If the equilibrium concentration of HCl is 0.5 M, what is the equilibrium concentration of NH3. NH4CI(s) ⇌ NH3(g) + HCI(g)arrow_forward
- please help by Draw the following structures (Lewis or line-angle drawing).arrow_forwardplease helparrow_forwardConsider the reaction: 2 A (aq) ⇌ B(aq) Given the following KC values and starting with the initial concentration of A = 4.00 M, complete ICE diagram(s)and find the equilibrium concentrations for A and B.A) KC = 4.00B) KC = 200C) KC = 8.00 x10-3arrow_forward
- 5) Consider the reaction: Cl2 (g) + F2 (g) ⟷ 2 ClF (g) KP=? The partial pressure of 203 kPa for Cl2 and a partial pressure of 405 kPa for F2. Upon reaching equilibrium, thepartial pressure of ClF is 180 kPa. Calculate the equilibrium concentrations and then find the value for KP.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception tothe general ionization energy (IE) trend. For the two elements involved, answer the followingquestions. Be sure to cite sources for all physical data that you use.a. (2 pts) Identify the two elements and write their electronic configurations.b. (2 pts) Based on their configurations, propose a reason for the IE trend exception.c. (5 pts) Calculate effective nuclear charges for the last electron in each element and theAllred-Rochow electronegativity values for the two elements. Can any of these valuesexplain the IE trend exception? Explain how (not) – include a description of how IErelates to electronegativity.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





