Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 62AP

(a) Show that the rate of change of the free-fall acceleration with vertical position near the Earth’s surface is

d g d r = 2 G M E R E 3

This rate of change with position is called a gradient.

(b) Assuming h is small in comparison to the radius of the Earth, show that the difference in free-fall acceleration between two points separated by vertical distance h is

| Δ g | = 2 G M E h R E 3

(c) Evaluate this difference for h = 6.00 m, a typical height for a two-story building.

(a)

Expert Solution
Check Mark
To determine

To show: The rate of change of free fall acceleration with vertical position near the Earth’s surface is dgdr=(2GMERE3) .

Explanation of Solution

Explanation:

The rate of change free fall acceleration with position of any quantity is called gradient. And the free fall acceleration is the acceleration of a body falling freely in a vacuum near the surface of the Earth. it is also called as acceleration due to gravity.

Formula to calculate the acceleration due to gravity at distance r from the Earth surface is,

g=GME(RE+r)2

G is the universal gravitational constant.

RE is the radius of the Earth.

ME is the mass of the Earth.

g is the acceleration due to gravity.

r is the distance from the Earth surface.

The differentiate for the above equation with respect to r .

dgdr=GMEddr(1(RE+r)2)=GME(2(RE+r)3)=(2GME(RE+r)3)

The distance r is very small in compare to the radius of the Earth so the neglect term r .

dgdr=(2GME(RE)3)

Conclusion:

Therefore, the rate of change of free fall acceleration with vertical position near the Earth’s surface is dgdr=(2GMERE3) .

(b)

Expert Solution
Check Mark
To determine

To show: The difference in free fall acceleration with between two points separated by vertical distance h is |Δg|=(2GMEhRE3) .

Explanation of Solution

Explanation:

The force that attracts a body towards the center of the Earth, or towards any other physical body having mass called as gravity.

Formula to calculate the difference in free fall acceleration between two points is,

|Δg|=gg (I)

g is the acceleration due to gravity at the distance h .

Formula to calculate the acceleration due to gravity at the Earth surface is,

g=GME(RE)2

Formula to calculate the acceleration due to gravity at a vertical distance h from the Earth surface is,

g=GME(RE+h)2

h is the distance from the Earth surface.

Substitute GME(RE+h)2 for g and GME(RE)2 for g in equation (I).

|Δg|=GME(RE)2GME(RE+h)2=GME((RE+h)2(RE)2(RE+h)2(RE)2)=GME((2REh+h2)(1+hRE)2(RE)4)

The distance h is very small in compare to the radius of the Earth so the neglect term h2 and the value of hRE<1 so neglect the term hRE .

|Δg|=GME((2REh)(1)2(RE)4)=((2GMEh)(RE)3) (II)

Conclusion:

Therefore, the difference in free fall acceleration with between two points separated by vertical distance h is |Δg|=(2GMEhRE3) .

(c)

Expert Solution
Check Mark
To determine

To determine: The difference in free fall acceleration between two points separated by vertical distance h=6.0m .

Answer to Problem 62AP

Answer: The difference in free fall acceleration between two points separated by vertical distance h=6.0m is 1.85×105m/s2 .

Explanation of Solution

Explanation:

From equation (II),

|Δg|=((2GMEh)(RE)3)

Substitute 5.972×1024kg for ME , 6371000m for RE 6.0m for h and 6.67×1011Nm2/kg2 for G to find |Δg| .

|Δg|=((2×6.67×1011Nm2/kg2×5.972×1024kg×6.0m)(6371000m)3)=1.85×105m/s2

Conclusion:

Therefore, the difference in free fall acceleration with between two points separated by vertical distance h=6.0m is 1.85×105m/s2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 13 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 13 - Prob. 7OQCh. 13 - Prob. 8OQCh. 13 - Prob. 9OQCh. 13 - Prob. 10OQCh. 13 - Prob. 11OQCh. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 1PCh. 13 - Determine the order of magnitude of the...Ch. 13 - Prob. 3PCh. 13 - During a solar eclipse, the Moon, the Earth, and...Ch. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Review. Miranda, a satellite of Uranus, is shown...Ch. 13 - (a) Compute the vector gravitational field at a...Ch. 13 - Prob. 15PCh. 13 - A spacecraft in the shape of a long cylinder has a...Ch. 13 - An artificial satellite circles the Earth in a...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - A particle of mass m moves along a straight line...Ch. 13 - Prob. 21PCh. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Prob. 24PCh. 13 - Use Keplers third law to determine how many days...Ch. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - (a) Given that the period of the Moons orbit about...Ch. 13 - Suppose the Suns gravity were switched off. The...Ch. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - How much energy is required to move a 1 000-kg...Ch. 13 - Prob. 33PCh. 13 - An object is released from rest at an altitude h...Ch. 13 - A system consists of three particles, each of mass...Ch. 13 - Prob. 36PCh. 13 - A 500-kg satellite is in a circular orbit at an...Ch. 13 - Prob. 38PCh. 13 - Prob. 39PCh. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Ganymede is the largest of Jupiters moons....Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50APCh. 13 - Prob. 51APCh. 13 - Voyager 1 and Voyager 2 surveyed the surface of...Ch. 13 - Prob. 53APCh. 13 - Why is the following situation impossible? A...Ch. 13 - Let gM represent the difference in the...Ch. 13 - A sleeping area for a long space voyage consists...Ch. 13 - Prob. 57APCh. 13 - Prob. 58APCh. 13 - Prob. 59APCh. 13 - Two spheres having masses M and 2M and radii R and...Ch. 13 - Prob. 61APCh. 13 - (a) Show that the rate of change of the free-fall...Ch. 13 - Prob. 63APCh. 13 - Prob. 64APCh. 13 - Prob. 65APCh. 13 - A certain quaternary star system consists of three...Ch. 13 - Studies of the relationship of the Sun to our...Ch. 13 - Review. Two identical hard spheres, each of mass m...Ch. 13 - Prob. 69APCh. 13 - Prob. 70APCh. 13 - Prob. 71APCh. 13 - Prob. 72APCh. 13 - Prob. 73APCh. 13 - Two stars of masses M and m, separated by a...Ch. 13 - Prob. 75APCh. 13 - Prob. 76APCh. 13 - As thermonuclear fusion proceeds in its core, the...Ch. 13 - The Solar and Heliospheric Observatory (SOHO)...Ch. 13 - Prob. 79CPCh. 13 - Prob. 80CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY