Concept explainers
(a) Show that the rate of change of the free-fall acceleration with vertical position near the Earth’s surface is
This rate of change with position is called a gradient.
(b) Assuming h is small in comparison to the radius of the Earth, show that the difference in free-fall acceleration between two points separated by vertical distance h is
(c) Evaluate this difference for h = 6.00 m, a typical height for a two-story building.
(a)
To show: The rate of change of free fall acceleration with vertical position near the Earth’s surface is
Explanation of Solution
Explanation:
The rate of change free fall acceleration with position of any quantity is called gradient. And the free fall acceleration is the acceleration of a body falling freely in a vacuum near the surface of the Earth. it is also called as acceleration due to gravity.
Formula to calculate the acceleration due to gravity at distance
The differentiate for the above equation with respect to
The distance
Conclusion:
Therefore, the rate of change of free fall acceleration with vertical position near the Earth’s surface is
(b)
To show: The difference in free fall acceleration with between two points separated by vertical distance
Explanation of Solution
Explanation:
The force that attracts a body towards the center of the Earth, or towards any other physical body having mass called as gravity.
Formula to calculate the difference in free fall acceleration between two points is,
Formula to calculate the acceleration due to gravity at the Earth surface is,
Formula to calculate the acceleration due to gravity at a vertical distance
Substitute
The distance
Conclusion:
Therefore, the difference in free fall acceleration with between two points separated by vertical distance
(c)
To determine: The difference in free fall acceleration between two points separated by vertical distance
Answer to Problem 62AP
Answer: The difference in free fall acceleration between two points separated by vertical distance
Explanation of Solution
Explanation:
From equation (II),
Substitute
Conclusion:
Therefore, the difference in free fall acceleration with between two points separated by vertical distance
Want to see more full solutions like this?
Chapter 13 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forwardLab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University