ELEMENTARY STATISTICS-ALEKS ACCESS CODE
3rd Edition
ISBN: 9781265787219
Author: Navidi
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 5RE
a.
To determine
To find:The regression equation for the data.
b.
To determine
To find: The confidence interval for the data.
c.
To determine
To find:Whether the concentration of additive is useful in predicting the drying time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The accompanying data represent the number of days absent, x, and the final exam score, y, for a sample of college students in a general education course at a large state university. Complete parts (a) through (e) below.
Click the icon to view the absence count and final exam score data.
Click the icon to view a table of critical values for the correlation coefficient.
.....
(a) Find the least-squares regression line treating number of absences as the explanatory variable and the final exam score as the response variable.
%3D
+
(Round to three decimal places as needed.)
(b) Interpret the slope and the y-intercept, if appropriate. Choose the correct answer below and fill in any answer boxes in your choice.
(Round to three decimal places as needed.)
Question Viewer
O A. For every additional absence, a student's final exam score drops
points, on average. It is not appropriate to interpret the y-intercept.
B. For every additional absence, a student's final exam score drops
points, on…
The rental of an apartment (?R) near campus is a function of the square footage (??Sq). A random sample of apartments near campus yielded the following summary statistics: ?¯R¯ = $340, ??¯Sq¯ = 93, ??sR = $ 29.1, and ???sSq= 10.5. Suppose also that the correlation between price and weight is ?r = 0.83.
(a) Write the implied least squares linear regression equation. (b) Suppose an apartment has 75 sqft. Predict its price based on the above model. (c) Suppose the true rental of the apartment in part (b) is $ 345. What is the value of the residual?
What is the relationship between diamond price and carat size? 307 diamonds were sampled and a straight-line relationship was hypothesized between y = diamond price (in dollars) and x = size of the diamond (in carats). The simple linear regression for the analysis is shown below:
Least Squares Linear Regression of PRICE
Interpret the standard deviation of the regression model.
a) We expect most of the sampled diamond prices to fall within $1117.56 of their least squares predicted values.
b) We can explain 89.25% of the variation in the sampled diamond prices around their mean using the size of the diamond in a linear model.
c) For every 1-carat increase in the size of a diamond, we estimate that the price of the diamond will increase by $1117.56.
d) We expect most of the sampled diamond prices to fall within $2235.12 of their least squares predicted values.
Chapter 13 Solutions
ELEMENTARY STATISTICS-ALEKS ACCESS CODE
Ch. 13.1 - Prob. 7ECh. 13.1 - Prob. 8ECh. 13.1 - In Exercises 9 and 10, determine whether the...Ch. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16E
Ch. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 26aECh. 13.1 - Calculator display: The following TI-84 Plus...Ch. 13.1 - Prob. 28aECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Confidence interval for the conditional mean: In...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Dry up: Use the data in Exercise 26 in Section...Ch. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - In Exercises 9 and 10, determine whether the...Ch. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - For the following data set: Construct the multiple...Ch. 13.3 - Engine emissions: In a laboratory test of a new...Ch. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13 - A confidence interval for 1 is to be constructed...Ch. 13 - A confidence interval for a mean response and a...Ch. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Construct a 95% confidence interval for 1.Ch. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 1RECh. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Air pollution: Following are measurements of...Ch. 13 - Icy lakes: Following are data on maximum ice...Ch. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 1WAICh. 13 - Prob. 2WAICh. 13 - Prob. 1CSCh. 13 - Prob. 2CSCh. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CSCh. 13 - Prob. 6CSCh. 13 - Prob. 7CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardFor the following exercises, use Table 4 which shows the percent of unemployed persons 25 years or older who are college graduates in a particular city, by year. Based on the set of data given in Table 5, calculate the regression line using a calculator or other technology tool, and determine the correlation coefficient. Round to three decimal places of accuracyarrow_forward
- A regression model to predict Y, the state burglary rate per 100,000 people, used the following four state predictors: X₁ = median age, X₂ = number of bankruptcies per 1.000 population, X3 = federal expenditures per capita (a leading predictor), and X4 = high school graduation percentage. Click here for the Excel Data File (a) Using the sample size of 50 people, calculate the calc and p-value in the table given below. (Negative values should be indicated by a minus sign. Leave no cells blank - be certain to enter "0" wherever required. Round your answers to 4 decimal places.) Predictor Intercept AgeMed Bankrupt FedSpend HSGrad% Answer is complete but not entirely correct. *calc 5.2526 -2.1764✔✔ 1.4101✔ Coefficient 4,198.5808 -27.3540 17.4893 -0.0124 -29.0314 SE 799.3395 12.5687 12.4033 0.0176 7.1268 -0.7045 -4.0736 p-value 0.0000 0.0348 0.2935 0.4848 0.0002arrow_forward2arrow_forwardThe rental of an apartment (R) near campus is a function of the square footage (Sq). A random sample of apartments near campus yielded the following summary statistics: R= $350, Sq = 100, sR = $ 30, and 8 są = 10. Suppose also that the correlation between price and weight is 0.8. (a) Write the implied least squares linear regression equation. (b) Suppose an apartment has 75 sqft. Predict its price based on the above model. (c) Suppose the true rental of the apartment in part (b) is $ 325. What is the value of the residual?arrow_forward
- 9(20 pts). Correlation analysis and Simple Linear Regression. A study is con- ducted with a group of dieters to see if the number of grams of fat each consumes per day, x, is related to cholesterol level y. The data are shown in Spreadsheet "Question 8": Fat Grams x: 6.8 5.5 8.2 10 8.6 9.1 8.6 10.4 5.9 6.3 7.6 8 8.5 7.9 5.9 6.7 9.1 10.1 9.5 8.9 Cholesterol Level y: 212 192 193 263 222 250 190 249 190 185 192 201 215 189 203 194 241 256 255 245 pole sta ber of of perm lity o n = 20, Στ = 161.6, y = 216.85, Σ Υ = 4337, = 8.08, Σν = 955159. Στ? = 1347.52, Σ y = 35671.5, (a) Compute the value of the correlation coefficient, r, between x and y. (b) Test if the population correlation coefficient p > 0.5 at a = 0.05. (c) Determine the regression line equation y' = a + bx. (d) Predict the cholesterol level of a dieter who consumes x = 8.5 grams of fat per day. (e) Find the 90% prediction interval of the cholesterol level of a person who consumes x=8.5 grams of fat per day. at mo 9 mally tribu…arrow_forwardA regression model to predict Y, the state burglary rate per 100,000 people, used the following four state predictors: X₁ = median age, X₂ = number of bankruptcies per 1,000 population, X3 = federal expenditures per capita (a leading predictor), and X4 = high school graduation percentage. Click here for the Excel Data File (a) Using the sample size of 50 people, calculate the tcalc and p-value in the table given below. (Negative values should be indicated by a minus sign. Leave no cells blank - be certain to enter "0" wherever required. Round your answers to 4 decimal places.) Predictor Intercept AgeMed Bankrupt FedSpend HSGrad% Coefficient t-value = 4,198.5808 -27.3540 17.4893 -0.0124 -29.0314 SE 799.3395 12.5687 12.4033 0.0176 7.1268 tcalc p-value (b-1) What is the critical value of Student's t in Appendix D for a two-tailed test at a = .01? (Round your answer to 3 decimal places.)arrow_forwardA football coach is looking for a way to identify players that are "under weight". The coach decides to get data for each player's height (x, in inches) and weight (y, in pounds), then does a linear regression. The results are: 58+3.7x, r = 0.86 and the standard error is Se = 10.4. Since there is a strong linear correlation the coach, who also majored in Statistics, decides to identify all "outliers" in the data. Obviously, any player whose weight is above the regression line is not "under weight". So the only outliers the coach is interested in are those that are below the regression line. What is the lowest weight possible for a 75 inch player to not be considered "under weight"? Do not round. Submit Question ctor GSearch or type URL & % 24 6 7arrow_forward
- A regression model to predict Y, the state burglary rate per 100,000 people, used the following four state predictors: X1 = median age, X2 = number of bankruptcies per 1,000 population, X3 = federal expenditures per capita (a leading predictor), and X4 = high school graduation percentage. Click here for the Excel Data File (a) Using the sample size of 45 people, calculate the tcalc and p-value in the table given below. (Negative values should be indicated by a minus sign. Leave no cells blank - be certain to enter "0" wherever required. Round your t-values to 3 decimal places and p- values to 4 decimal places.) Predictor Intercept AgeMed Coefficient SE tcalc p-value 4,641.0430 798.0634 -28.8630 12.4684 Bankrupt 20.1604 12.1079 FedSpend HSGrad% -0.0181 0.0181 -30.3196 7.1136 (b-1) What is the critical value of Student's tin Appendix D for a two-tailed test at a = .01? (Round your answer to 3 decimal places.) -value =arrow_forwardPolice sometimes use footprint evidence to estimate the height of a suspect. Data was collected from 36 randomly selected men in Nebraska in 2001. The regression model assumptions have been checked, and they are all satisfied. We want to test if there is a positive linear association between shoe print size and average height. The p-value of the appropriate test was found to be 0.0006. (a) Give your brief conclusion. Note that no significance level is provided. (b) Give your conclusion in the context of the problem. (This question will be marked manually by your instructor).arrow_forwardd and earrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY