
College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 4CQ
To determine
To explain: Why the bag of blood is held above of body in blood transfusion whereas blood bag is held below in the process of donating blood.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Is it possible for average velocity to be negative?a. Yes, in cases when the net displacement is negative.b. Yes, if the body keeps changing its direction during motion.c. No, average velocity describes only magnitude and not the direction of motion.d. No, average velocity describes only the magnitude in the positive direction of motion.
Tutorial Exercise
An air-filled spherical capacitor is constructed with an inner-shell radius of 6.95 cm and an outer-shell radius of 14.5 cm.
(a) Calculate the capacitance of the device.
(b) What potential difference between the spheres results in a 4.00-μC charge on the capacitor?
Part 1 of 4 - Conceptualize
Since the separation between the inner and outer shells is much larger than a typical electronic capacitor with separation on the order of 0.1 mm and capacitance in the microfarad range, we expect the
capacitance of this spherical configuration to be on the order of picofarads. The potential difference should be sufficiently low to avoid sparking through the air that separates the shells.
Part 2 of 4 - Categorize
We will calculate the capacitance from the equation for a spherical shell capacitor. We will then calculate the voltage found from Q = CAV.
I need help figuring out how to do part 2 with the information given in part 1 and putting it in to the simulation. ( trying to match the velocity graph from the paper onto the simulation to find the applied force graph) Using this simulation https://phet.colorado.edu/sims/cheerpj/forces-1d/latest/forces-1d.html?simulation=forces-1d.
Chapter 13 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 13 - Which has the greater density, 1 g of mercury or...Ch. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - A steel cylinder at sea level contains air at a...
Ch. 13 - Prob. 11CQCh. 13 - Imagine a square column of the atmosphere, 1 m on...Ch. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - A beaker of water rests on a scale. A metal ball...Ch. 13 - Prob. 16CQCh. 13 - Prob. 17CQCh. 13 - Prob. 18CQCh. 13 - A heavy lead block and a light aluminum block of...Ch. 13 - When you place an egg in water, it sinks. If you...Ch. 13 - The water of the Dead Sea is extremely salty,...Ch. 13 - Fish can adjust their buoyancy with an organ...Ch. 13 - Prob. 23CQCh. 13 - Prob. 24CQCh. 13 - Prob. 25CQCh. 13 - Prob. 27CQCh. 13 - Prob. 28CQCh. 13 - Is it possible for a fluid in a tube to flow in...Ch. 13 - Prob. 31CQCh. 13 - Prob. 32MCQCh. 13 - Figure Q.13.33 shows a 100 g block of copper ( =...Ch. 13 - Masses A and B rest on very light pistons that...Ch. 13 - Prob. 35MCQCh. 13 - Prob. 36MCQCh. 13 - A large beaker of water is filled to its rim with...Ch. 13 - Prob. 38MCQCh. 13 - Prob. 40MCQCh. 13 - An object floats in water, with 75% of its volume...Ch. 13 - Prob. 42MCQCh. 13 - Water flows through a 4.0-cm-diameter horizontal...Ch. 13 - A 15-m-long garden hose has an inner diameter of...Ch. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - A standard gold bar stored at Fort Knox, Kentucky,...Ch. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - A tall cylinder contains 25 cm of water. Oil is...Ch. 13 - A 35-cm-tall, 5.0-cm-diameter cylindrical beaker...Ch. 13 - The gauge pressure at the bottom of a cylinder of...Ch. 13 - Prob. 12PCh. 13 - A research submarine has a 20-cm-diameter window...Ch. 13 - The highest that George can suck water up a very...Ch. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Prob. 17PCh. 13 - Glycerin is poured into an open U-shaped tube...Ch. 13 - A U-shaped tube, open to the air on both ends,...Ch. 13 - What is the height of a water barometer at...Ch. 13 - A cargo barge is loaded in a saltwater harbor for...Ch. 13 - Prob. 22PCh. 13 - A 10 cm 10 cm 10 cm wood block with a density of...Ch. 13 - What is the tension in the string in Figure...Ch. 13 - What is the tension in the string in Figure...Ch. 13 - To determine an athletes body fat, she is weighed...Ch. 13 - Prob. 28PCh. 13 - Styrofoam has a density of 32 kg/m3. What is the...Ch. 13 - Prob. 30PCh. 13 - Calculate the buoyant force due to the surrounding...Ch. 13 - Prob. 32PCh. 13 - Water flowing through a 2.0-cm-diameter pipe can...Ch. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 37PCh. 13 - Prob. 39PCh. 13 - Prob. 40PCh. 13 - What pressure difference is required between the...Ch. 13 - Prob. 42PCh. 13 - Water flows at 0.25 L/s through a 10-m-long garden...Ch. 13 - Prob. 44PCh. 13 - Prob. 45PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - As discussed in Section 13.3, a persons percentage...Ch. 13 - The density of aluminum is 2700 kg/m3. How many...Ch. 13 - An oil layer floats on 85 cm of water in a tank....Ch. 13 - Prob. 55GPCh. 13 - Prob. 56GPCh. 13 - A sphere completely submerged in water is tethered...Ch. 13 - Prob. 58GPCh. 13 - A 5.0 kg rock whose density is 4800 kg/m3 is...Ch. 13 - A flat slab of styrofoam, with a density of 32...Ch. 13 - A 2.0 mL syringe has an inner diameter of 6.0 mm,...Ch. 13 - Prob. 62GPCh. 13 - The leaves of a tree lose water to the atmosphere...Ch. 13 - II A hurricane wind blows across a 6.00 m 5.0 m...Ch. 13 - Prob. 65GPCh. 13 - Prob. 66GPCh. 13 - Prob. 67GPCh. 13 - Prob. 68GPCh. 13 - Prob. 69GPCh. 13 - Smoking tobacco is bad for your circulatory...Ch. 13 - A stiff, 10-cm-long tube with an inner diameter of...Ch. 13 - Suppose that in response to some stimulus a small...Ch. 13 - Prob. 73MSPPCh. 13 - Prob. 75MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius г (see figure below) with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 3.00 cm and that the wire along the axis has a diameter of 0.190 mm. The dielectric strength of the gas between the central wire and the cylinder is 1.15 × 106 V/m. Use the equation 2πrlE = 9in to calculate the maximum potential difference that can be applied between the wire and the cylinder before breakdown occurs in the gas. V Anode Cathodearrow_forward3.77 is not the correct answer!arrow_forwardA I squar frame has sides that measure 2.45m when it is at rest. What is the area of the frame when it moves parellel to one of its diagonal with a m² speed of 0.86.c as indicated in the figure? >V.arrow_forward
- An astronent travels to a distant star with a speed of 0.44C relative to Earth. From the austronaut's point of view, the star is 420 ly from Earth. On the return trip, the astronent travels speed of 0.76c relative to Earth. What is the distance covered on the return trip, as measured by the astronant? your answer in light-years. with a Give ly.arrow_forwardstar by spaceship Sixus is about 9.00 ly from Earth. To preach the star in 15.04 (ship time), how fast must you travel? C.arrow_forwardIf light-bulb A is unscrewed, how will the brightness of bulbs B and C change, if at all? How does the current drawn by from the battery change?arrow_forward
- Can someone help mearrow_forwardCan someone help me with this thank youarrow_forward(a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University


Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College