Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
12th Edition
ISBN: 9781259587399
Author: Eugene Hecht
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 49SP
A metal object “weighs” 26.0 g in air and 21.48 g when totally immersed in water. What is the volume of the object? What is its mass density?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
Ch. 13 - 13.26 [I] The sole of a man’s size-10 shoe is...Ch. 13 - 13.27 [I] A 60-kg performer balances on a cane....Ch. 13 - Prob. 28SPCh. 13 - 13.29 [I] During the Second World War, submarine...Ch. 13 - 13.30 [I] In 2010 the U.S. Center for Coastal and...Ch. 13 - 13.31 [I] A large tank of benzene is open on top....Ch. 13 - 13.32 [I] A large open rectangular tank 2.00 m by...Ch. 13 - 13.33 [I] A certain town receives its water...Ch. 13 - 13.34 [II] At a height of 10 km (33 000 ft) above...Ch. 13 - 13.35 [II] A narrow tube is sealed onto a tank as...
Ch. 13 - 13.36 [II] Repeat Problem 13.35, but now find the...Ch. 13 - 13.37 [II] Compute the pressure required for a...Ch. 13 - 38. A covered cubic tank 5.00 m by 5.00 m by 5.00...Ch. 13 - 39. A cubic covered tank 5.00 m by 5.00 m by 5.00...Ch. 13 - 40. For the press in Fig. 13-3, the ratio of the...Ch. 13 - 13.41 [I] The output area of the piston in the...Ch. 13 - 13.42 [I] For the hydraulic press in Fig. 13-3,...Ch. 13 - 13.43 [II] The area of a piston of a force pump is...Ch. 13 - 13.44 [II] The diameter of the large piston of a...Ch. 13 - 45. An iron cube 20.0 cm on each side is submerged...Ch. 13 - 13.46 [I] The cube in the previous problem is...Ch. 13 - 47. A metal cube, 2.00 cm on each side, has a...Ch. 13 - 48. A solid wooden cube, 30.0 cm on each edge, can...Ch. 13 - 49. A metal object “weighs” 26.0 g in air and...Ch. 13 - 50. A solid piece of aluminum (ρ = 2.70 g/cm3) has...Ch. 13 - 51. A beaker contains oil of density 0.80 g/cm3. A...Ch. 13 - 13.52 [II] A tank containing oil of sp rests on a...Ch. 13 - Prob. 53SPCh. 13 - 13.54 [III] Determine the unbalanced force acting...Ch. 13 -
57. A piece of metal has a measured mass of 5.00...Ch. 13 - 13.56 [II] A balloon and its gondola have a total...Ch. 13 - 55. A 2.0-cm cube of metal is suspended by a fine...Ch. 13 - Prob. 58SPCh. 13 - 13.59 [II] What fraction of the volume of a piece...Ch. 13 - 13.60 [II] A cube of wood floating in water...Ch. 13 - 13.61 [III] Suppose we have a spring scale that...Ch. 13 - 13.62 [II] A glass of water has a ice cube...Ch. 13 - 13.63 [II] A glass tube is bent into the form of a...Ch. 13 - 13.64 [II] On a day when the pressure of the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hollow copper (Cu = 8.92 103 kg/m3) spherical shell of mass m = 0.950 kg floats on water with its entire volume below the surface. a. What is the radius of the sphere? b. What is the thickness of the shell wall?arrow_forwardA table-tennis ball has a diameter of 3.80 cm and average density of 0.084 0 g/cm3. What force is required to hold it completely submerged under water?arrow_forwardA 10.0-kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in water as shown in Figure P15.24b. The 12.0-cm dimension is vertical, and the top of the block is 5.00 cm below the surface of the water. (a) What are the magnitudes of the forces acting on the top and on the bottom of the block due to the surrounding water? (b) What is the reading of the spring scale? (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block.arrow_forward
- If your body has a density of 995 kg/m3, what fraction of you will be submerged when floating gently in: (a) Freshwater? (b) Salt water, which has a density of 1027 kg/m3?arrow_forwardMercury is poured into a U-tube as shown in Figure P15.17a. The left arm of the tube has cross-sectional area A1 of 10.0 cm2, and the right arm has a cross-sectional area A2 of 5.00 cm2. One hundred grams of water are then poured into the right arm as shown in Figure P15.17b. (a) Determine the length of the water column in the right arm of the U-tube. (b) Given that the density of mercury is 13.6 g/cm3, what distance h does the mercury rise in the left arm?arrow_forward(a) What is the density of a woman who floats in freshwater with 4.00% of her volume above the surface? This could be measured by placing her in a tank with marks on the side to measure how much water she displaces when floating and when held under water (briefly). (b) What percent of her volume is above the surface when she floats in seawater?arrow_forward
- . A juniper-wood plank measuring 0.25 ft by 1 ft by 16 ft is totally submerged in water, (a) What is its weight? (b) What is the buoyant force acting on it? (c) What is the size and the direction of the net force on it?arrow_forwardA rock with a mass of 540 g in air is found to have an apparent mass of 342 g when submerged in water. (a) What mass of water is displaced? (b) What is the volume of the rock? (c) What is its average density? Is this consistent with the value for granite?arrow_forwardThe spirit-in-glass thermometer, invented in Florence, Italy, around 1654, consists of a tube of liquid (the spirit) containing a number of submerged glass spheres with slightly different masses (Fig. P14.41). At sufficiently low temperatures, all the spheres float, but as the temperature rises, the spheres sink one after another. The device is a crude but interesting tool for measuring temperature. Suppose the tube is filled with ethyl alcohol, whose density is 0.789 45 g/cm3 at 20.0C and decreases to 0.780 97 g/cm3 at 30.0C. (a) Assuming that one of the spheres has a radius of 1.000 cm and is in equilibrium halfway up the tube at 20.0C, determine its mass. (b) When the temperature increases to 30.0C, what mass must a second sphere of the same radius have to be in equilibrium at the halfway point? (c) At 30.0C, the first sphere has fallen to the bottom of the tube. What upward force does the bottom of the tube exert on this sphere? Figure P14.41arrow_forward
- A Hydrometer is an instrument used to determine liquid density. A simple one is sketched in Figure P9.84. The bulb of a syringe is squeezed and released to lift a sample of the liquid of interest into a tube containing a calibrated rod of known density. (Assume the rod is cylindrical.) The rod. of length L and average density 0, floats partially immersed in the liquid of density . A length h of the rod protrudes above the surface of the liquid. Show that the density of the liquid is given by =0LLh Figure P9.84arrow_forwardFigure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forwardA tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
How to Calculate Density of Liquids - With Examples; Author: cleanairfilms;https://www.youtube.com/watch?v=DVQMWihs3wQ;License: Standard YouTube License, CC-BY