MATH IN OUR WORLD
4th Edition
ISBN: 9781266427183
Author: sobecki
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 3CT
(a)
To determine
To draw: The graph that represents the states in Figure 14-71.
(b)
To determine
The smallest number of colors needed to color the map so that no states sharing a common border are the same color.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A simple graph with many edges has a label on each edge. The current labels are "a", "b", "c", "d", "e" and "f".
To simplify the representation, the labels will be changed to colors.
The edges will be recolored with 6 colors, blue (B), green (G), purple (P), red (R), orange (O), and yellow (Y).
In how many ways can we redraw the graph by replacing each label with a color?
The fictional map below shows the boundaries of countries on a rectangular continent.
a. Represent the map as a graph and color it using the fewest possible number of colors.
b. Create a drawing for the map and color it based from the graph coloring in (a).
Provided below is a map of 10 states: Wyoming, Colorado, New Mexico, South Dakota, Nebraska, Kansas, Oklahoma, Arkansas, Missouri and Iowa. Construct a graph where two vertices are connected if the two states share a border. Then perform a graph coloring to determine the minimum number of colors needed.
Chapter 13 Solutions
MATH IN OUR WORLD
Ch. 13.1 - Prob. 1TTOCh. 13.1 - The floor plan shown in Figure 14-7 is for a...Ch. 13.1 - Prob. 3TTOCh. 13.1 - Draw a graph for my neighborhood, shown in Figure...Ch. 13.1 - Prob. 5TTOCh. 13.1 - Prob. 6TTOCh. 13.1 - Prob. 7TTOCh. 13.1 - Prob. 8TTOCh. 13.1 - Prob. 1ECh. 13.1 - What is the difference between a loop and a...
Ch. 13.1 - What is the difference between a circuit and a...Ch. 13.1 - Draw two graphs that look physically different but...Ch. 13.1 - Prob. 5ECh. 13.1 - Prob. 8ECh. 13.1 - Prob. 9ECh. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - How does graph coloring apply to maps?Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Prob. 18ECh. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Prob. 20ECh. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - For Exercises 3134, represent each figure using a...Ch. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Prob. 36ECh. 13.1 - For Exercises 3538, draw a graph to represent each...Ch. 13.1 - Prob. 38ECh. 13.1 - Prob. 39ECh. 13.1 - For Exercises 3942, draw a graph that represents...Ch. 13.1 - Prob. 41ECh. 13.1 - Prob. 42ECh. 13.1 - In Exercises 4350, use graph coloring to find the...Ch. 13.1 - Prob. 44ECh. 13.1 - Prob. 45ECh. 13.1 - Prob. 46ECh. 13.1 - In Exercises 4350, use graph coloring to find the...Ch. 13.1 - Prob. 48ECh. 13.1 - Prob. 49ECh. 13.1 - Prob. 50ECh. 13.1 - Prob. 51ECh. 13.1 - Prob. 52ECh. 13.1 - Prob. 53ECh. 13.1 - Prob. 54ECh. 13.1 - Prob. 55ECh. 13.1 - Draw a graph that represents the street map in...Ch. 13.1 - Prob. 57ECh. 13.1 - Prob. 58ECh. 13.1 - Prob. 59ECh. 13.1 - Prob. 61ECh. 13.1 - Prob. 62ECh. 13.1 - Prob. 63ECh. 13.1 - (a)When a graph represents a map as in Exercise...Ch. 13.2 - Classify the paths shown in the graphs as Euler...Ch. 13.2 - Use Euler's theorem to determine if the graphs...Ch. 13.2 - Prob. 3TTOCh. 13.2 - Prob. 4TTOCh. 13.2 - Prob. 1ECh. 13.2 - Prob. 2ECh. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - For Exercises 710, decide whether each connected...Ch. 13.2 - Prob. 10ECh. 13.2 - For Exercises 710, decide whether each connected...Ch. 13.2 - Prob. 12ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 14ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 16ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 18ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 20ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 23ECh. 13.2 - Prob. 24ECh. 13.2 - Prob. 25ECh. 13.2 - Prob. 26ECh. 13.2 - Prob. 27ECh. 13.2 - For Exercises 2126, draw a graph for the figures...Ch. 13.2 - Prob. 29ECh. 13.2 - Prob. 30ECh. 13.2 - Prob. 31ECh. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - For Exercises 33 and 34, determine if an Euler...Ch. 13.2 - For Exercises 33 and 34, determine if an Euler...Ch. 13.2 - Prob. 37ECh. 13.2 - Prob. 39ECh. 13.2 - Prob. 40ECh. 13.2 - Draw some sample graphs and use them to discuss...Ch. 13.2 - Prob. 42ECh. 13.2 - Prob. 43ECh. 13.2 - Prob. 44ECh. 13.2 - Prob. 45ECh. 13.2 - Explain why the word connected is crucial...Ch. 13.2 - Prob. 47ECh. 13.2 - Prob. 48ECh. 13.3 - Prob. 1TTOCh. 13.3 - Prob. 2TTOCh. 13.3 - Prob. 3TTOCh. 13.3 - The driving times in minutes between four cities...Ch. 13.3 - Prob. 5TTOCh. 13.3 - Prob. 6TTOCh. 13.3 - Prob. 7TTOCh. 13.3 - What is the difference between a Hamilton path and...Ch. 13.3 - Prob. 2ECh. 13.3 - Give an example of a problem in our world that can...Ch. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Describe what a typical traveling salesperson...Ch. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - For Exercises 1118, find two different Hamilton...Ch. 13.3 - Prob. 14ECh. 13.3 - Prob. 15ECh. 13.3 - Prob. 16ECh. 13.3 - For Exercises 1118, find two different Hamilton...Ch. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - For Exercises 1118, find two different Hamilton...Ch. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13.3 - Prob. 24ECh. 13.3 - For Exercises 1924, find two different Hamilton...Ch. 13.3 - Prob. 26ECh. 13.3 - Prob. 27ECh. 13.3 - Prob. 28ECh. 13.3 - For Exercises 2528, find the number of Hamilton...Ch. 13.3 - Prob. 30ECh. 13.3 - Prob. 31ECh. 13.3 - For Exercises 29 and 30, use the brute force...Ch. 13.3 - For Exercises 3134, use the nearest neighbor...Ch. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.3 - Prob. 38ECh. 13.3 - Prob. 39ECh. 13.3 - Prob. 40ECh. 13.3 - Prob. 41ECh. 13.3 - For Exercises 3942, use the information in the...Ch. 13.3 - Prob. 43ECh. 13.3 - Prob. 44ECh. 13.3 - Prob. 45ECh. 13.3 - For Exercises 4346, use the information in the...Ch. 13.3 - For Exercises 4346, use the information in the...Ch. 13.3 - For Exercises 45–48, use the information in the...Ch. 13.3 - Prob. 49ECh. 13.3 - A pizza delivery person has five prearranged...Ch. 13.3 - Prob. 51ECh. 13.3 - Prob. 52ECh. 13.3 - Prob. 53ECh. 13.3 - Prob. 54ECh. 13.3 - When planning routes, distance isnt always the key...Ch. 13.3 - Prob. 56ECh. 13.3 - Repeat questions 51 through 54, choosing four...Ch. 13.3 - Prob. 58ECh. 13.3 - Prob. 59ECh. 13.3 - Prob. 60ECh. 13.3 - Find a road atlas that has a mileage chart. Pick...Ch. 13.3 - Prob. 62ECh. 13.3 - Prob. 63ECh. 13.3 - Prob. 64ECh. 13.3 - Prob. 65ECh. 13.3 - Prob. 66ECh. 13.3 - Prob. 67ECh. 13.3 - Prob. 68ECh. 13.3 - Prob. 69ECh. 13.3 - Prob. 70ECh. 13.3 - Prob. 71ECh. 13.3 - Prob. 72ECh. 13.3 - Prob. 73ECh. 13.3 - Prob. 74ECh. 13.4 - Prob. 1TTOCh. 13.4 - Prob. 2TTOCh. 13.4 - Prob. 3TTOCh. 13.4 - Prob. 4TTOCh. 13.4 - Prob. 5TTOCh. 13.4 - Prob. 1ECh. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Prob. 5ECh. 13.4 - Prob. 6ECh. 13.4 - For Exercise 716, decide whether or not each graph...Ch. 13.4 - Prob. 8ECh. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Prob. 11ECh. 13.4 - Prob. 12ECh. 13.4 - Prob. 13ECh. 13.4 - Prob. 14ECh. 13.4 - Prob. 15ECh. 13.4 - Prob. 16ECh. 13.4 - Prob. 17ECh. 13.4 - Prob. 18ECh. 13.4 - Prob. 19ECh. 13.4 - Prob. 20ECh. 13.4 - Prob. 21ECh. 13.4 - Prob. 22ECh. 13.4 - Prob. 23ECh. 13.4 - Prob. 24ECh. 13.4 - Prob. 25ECh. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Prob. 29ECh. 13.4 - Prob. 30ECh. 13.4 - Prob. 31ECh. 13.4 - Prob. 32ECh. 13.4 - Prob. 33ECh. 13.4 - As a new suburban neighborhood is being built, the...Ch. 13.4 - Prob. 35ECh. 13.4 - Prob. 36ECh. 13.4 - Prob. 37ECh. 13.4 - Prob. 38ECh. 13.4 - Prob. 39ECh. 13.4 - In the last two sections, we used both Hamilton...Ch. 13.4 - Prob. 41ECh. 13.4 - Prob. 42ECh. 13.4 - Prob. 43ECh. 13.4 - Prob. 44ECh. 13 - Use the graph shown in Figure 14-62 for Exercise...Ch. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Use the graph shown in Figure 14-62 for Exercises...Ch. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Repeat Exercise 13 for the graphs from Exercises...Ch. 13 - Prob. 15RECh. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Prob. 25RECh. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - For the following graph: (a)What is the degree of...Ch. 13 - Draw a graph with two bridges, and the...Ch. 13 - Prob. 3CTCh. 13 - Prob. 4CTCh. 13 - (a)For the graph shown in Figure 14-73, find an...Ch. 13 - Prob. 6CTCh. 13 - For the housing plan shown in Figure 14-75, draw a...Ch. 13 - Prob. 8CTCh. 13 - Use the brute force method to find the shortest...Ch. 13 - Use the nearest neighbor method and cheapest link...Ch. 13 - Prob. 11CTCh. 13 - Decide whether the problem can be solved using...
Knowledge Booster
Similar questions
- 6. Determine how many colors are needed to color the graph in the image belowarrow_forwardWhat is the smallest number of colors that can be used to color the vertices of a cube so that no two adjacent vertices are colored identically?arrow_forward1. The fictional map below shows the boundaries of towns on a rectangular region. a. Represent the map as a graph. b. Find a coloring of the graph using the fewest possible number of colors. c. Color the map according to the graph coloring theorem.arrow_forward
- An office building is installing eight Wi-Fi transmitting stations. Any stations within 200 feet of each other must transmit on different channels. The engineers have a chart of the distance between between each pair of stations. Suppose that they draw a graph where each vertex represents a Wi-Fi station and an edge connects two vertices if the distance between the stations is 200 feet or less. What would the chromatic number of the graph tell the engineers? Explainarrow_forwardFind an Euler circuit in this graph: Seattle New York City Chicago Denver Atlanta Los Angeles Houstonarrow_forwardHow many edges would a connected planar graph if it has 13 vertices and 9 faces?arrow_forward
- A forest is a graph consisting of one or more (separate) trees. If the total number of vertices in a forest is f, and the number of trees in the forest is t, what is the total number of edges in the forest?arrow_forwardHow many edges does Cn havearrow_forwardI know that there is an answered question on the question bank, but there are syntax errors the computer caused, so I don't understand it correctly. Prove that the two graphs below are isomorphic. Figure 4: Two undirected graphs. Each graph has 6 vertices. The vertices in the first graph are arranged in two rows and 3 columns. From left to right, the vertices in the top row are 1, 2, and 3. From left to right, the vertices in the bottom row are 6, 5, and 4. Undirected edges, line segments, are between the following vertices: 1 and 2; 2 and 3; 1 and 5; 2 and 5; 5 and 3; 2 and 4; 3 and 6; 6 and 5; and 5 and 4. The vertices in the second graph are a through f. Vertices d, a, and c, are vertically inline. Vertices e, f, and b, are horizontally to the right of vertices d, a, and c, respectively. Undirected edges, line segments, are between the following vertices: a and d; a and c; a and e; a and b; d and b; a and f; e and f; c and f; and b and f.arrow_forward
- The number of edges in a graph with 11 vertices each of degree 4 is 44 O 22 O 8 O 10arrow_forwardDd.65.arrow_forwardWhen faced with a difficult problem in mathematics, it often helps to draw a picture. If the problem involves a discrete collection of interrelated objects, it is natural to sketch the objects and draw lines between them to indicate the relationships. A graph (composed of dots called vertices connected by lines or curves called edges) is the mathematical version of such a sketch. The edges of a graph may have arrows on them; in this case, the graph is called a directed graph. When we draw a graph, it doesn’t really matter where we put the vertices or whether we draw the edges as curved or straight; rather, what matters is whether or not two given vertices are connected by an edge (or edges). The degree of a vertex is the number of edges incident to it (i.e., the number of times an edge touches it). This is different than the number of edges touching it, because an edge my form a loop; for instance, vertex ? in graph ? (above) has degree 5. In a directed graph, we can speak of the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education