21ST CENT.AST.W/WKBK+SMARTWORK >BI<
6th Edition
ISBN: 9780393415216
Author: Kay
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 29QP
(a)
To determine
The reason for the star 2 having smaller orbit than star 1.
(b)
To determine
The sketch when the star 1 has low mass
(c)
To determine
The sketch when the star 1and star 2 has the same mass
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What makes us think that the star system Cygnus X-1 contains a black hole?
A, It emits X rays characteristic of an accretion disk, but the unseen star in the system is too
massive to be a neutron star.
B. No light is emitted from this star system, so it must contain a black hole.
C. The fact that we see strong X-ray emission tells us that the system must contain a black
hole.
D.Cygnus X-1 is a powerful X-ray burster, so it must contain a black hole.
Which of the following binary star systems cannot exist?
A. A 1 solar-mass main sequence star and a 4 solar mass red giant with a size 100 times smaller than the orbital distance.
B. A 15 solar-mass main sequence star and a 10 solar mass red giant with a size 100 times smaller than the orbital distance.
C. A 1 solar-mass main sequence star and a 4 solar-mass main sequence star.
D. A 2 solar-mass main sequence star and a 1 solar mass red giant with a size a few times smaller than the orbital distance.
Star A and Star B are a bound binary at a distance of 20 pc from the Earth. Their
separation is 30 AU. Star A has a mass twice that of Star B. The orbital period of the
binary is 100 years. Assume the stars orbit in circular orbits.
a. What is the parallax of Star A, in units of arcsec? Assume parallax is measured from
the Earth. For part a, ignore the presence of the binary companion.
b.
What is the angular separation we would observe between Star A and Star B, in
units of arcsec? If we compare multiple images of this star system taken across
different months and years, which source of motion will be the dominant effect?
What is the total mass of the binary system (combined mass of Star A and Star B)?
Provide your answer in both kg and solar masses.
c.
d. What is the distance from Star A to the center of mass of the binary system?
Chapter 13 Solutions
21ST CENT.AST.W/WKBK+SMARTWORK >BI<
Ch. 13.1 - Prob. 13.1CYUCh. 13.2 - Prob. 13.2CYUCh. 13.3 - Prob. 13.3CYUCh. 13.4 - Prob. 13.4CYUCh. 13 - Prob. 1QPCh. 13 - Prob. 2QPCh. 13 - Prob. 3QPCh. 13 - Prob. 4QPCh. 13 - Prob. 5QPCh. 13 - Prob. 6QP
Ch. 13 - Prob. 7QPCh. 13 - Prob. 8QPCh. 13 - Prob. 9QPCh. 13 - Prob. 10QPCh. 13 - Prob. 11QPCh. 13 - Prob. 12QPCh. 13 - Prob. 13QPCh. 13 - Prob. 14QPCh. 13 - Prob. 15QPCh. 13 - Prob. 16QPCh. 13 - Prob. 17QPCh. 13 - Prob. 18QPCh. 13 - Prob. 19QPCh. 13 - Prob. 20QPCh. 13 - Prob. 21QPCh. 13 - Prob. 22QPCh. 13 - Prob. 23QPCh. 13 - Prob. 24QPCh. 13 - Prob. 25QPCh. 13 - Prob. 26QPCh. 13 - Prob. 27QPCh. 13 - Prob. 28QPCh. 13 - Prob. 29QPCh. 13 - Prob. 30QPCh. 13 - Prob. 31QPCh. 13 - Prob. 32QPCh. 13 - Prob. 33QPCh. 13 - Prob. 34QPCh. 13 - Prob. 35QPCh. 13 - Prob. 36QPCh. 13 - Prob. 37QPCh. 13 - Prob. 38QPCh. 13 - Prob. 39QPCh. 13 - Prob. 40QPCh. 13 - Prob. 41QPCh. 13 - Prob. 42QPCh. 13 - Prob. 43QPCh. 13 - Prob. 44QPCh. 13 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- GMm F, r2 F(r = R) The surface gravity g of a body is. The acceleration due to gravity that an object m would feel on the surface of the body. A. Show that the surface gravity of Earth is ge = 9.8 m/s². B. Determine the surface gravity of the Sun. C. Determine the surface gravity of the Sun when it becomes a red giant star, assuming RG 1 AU. Use this answer to explain the significant mass loss rates observed in these objects.arrow_forward1. Suppose you observe a tight eclipsing binary with orbital period of 3 days, and radial velocity semi-amplitude for both components of 80 kilometers/second. a. Without doing any calculation, you know that the mass ratio of the binary is 1:1. Explain why? b. What are the masses and orbital radii of the two stars? c. Suppose the binary is perfectly aligned so each eclipse the center of one star goes across the other. How often do you see an eclipse? d. Suppose one eclipse lasts for 3.5 hours. What is the radius of the stars?arrow_forwardWhich of the following is wrong? A. Tidal effects in a binary star system become more important when one or both stars become giant stars. B. There is no fusion occurring in the core of a low-mass red giant star. C. Gold (the element) is produced during the supernova explosions of high-mass stars. D. Suppose the star Betelgeuse were to become a supernova tomorrow, we'd see by naked eyes a cloud of gas expanding away from the position where Betelgeuse used to be. Over a period of a few weeks, this cloud would fill a large part of our sky.arrow_forward
- 4. Suppose we observe a binary star system in which one star is much more massive than the other and both are on the main sequence. We measure that the smaller star orbits the larger at a distance of 10¹3 m with a speed of 10 m/s. a. What is the mass of the larger star? b. Which star has a higher luminosity? c. Which has a larger radius? d. Which is hotter?arrow_forwardWhat is the most reliable way to measure the mass of a star for which the distance is unknown? a. Apply the mass-temperature relation. b. Measure its orbit around another star. c. Measure its radius, then compute its volume and multiply by density to get the mass. d. Compute its spectroscopic parallax, then apply the mass-luminosity relation.arrow_forwardWhat is the lifetime of a 10-solar-mass star on the main sequence? a. 3.2 × 107 years b. 320 years c. 3.2 × 1012 years d. 1 × 109 years e. 1 × 1011 yearsarrow_forward
- 1. Planet A has an orbital period of 12 years and radius that is 0.033 times the radius of the star. Calculate the fractional dip of the star brightness in the case that planet A is transiting. Give the answer as a number. Quote the formula you use and explain any assumptions you have to make. 2. Planet B has an orbital period of 1 year and is located closer to its star than planet A. You succeed in detecting planet B with the radial velocity technique as well! From this measurement you calculate a minimum mass of planet B to be 75% that of the Earth. (a) Since you detect the planet with both transit method and radial velocity method, what do you know about the inclination of the planetary system? (b) Given this inclination, estimate the true mass of planet B (in units of Earth mass). You do not need to do a detailed calculation, just explain the argument. 3. You also measure the radius of planet B to be the same as Earth, one Earth radius. (a) How does the density of planet B compare…arrow_forward"51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec. a. What is its distance from us? b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how doarrow_forwardThe orbit of the binary pulsar PSR 1936+16, studied by Taylor and Hulse, a. is so small that the orbital period is smaller than the pulsar period. b. is growing smaller, presumably by emitting gravitational waves. c. provides evidence that it is being orbited by at least 6 planets the size of Jupiter. d. shows large changes each time an X ray burst is emitted from the system. e. contains a white dwarf and a black hole.arrow_forward
- Which of the following nuclear fuels does a one-solar-mass star use over the course of its entire evolution? a. hydrogen b. hydrogen and helium c. hydrogen, helium, and carbon d. hydrogen, helium, carbon, and neon e. hydrogen, helium, carbon, neon, and oxygenarrow_forwardWhy don’t all supernova remnants contain pulsars? a. All supernova remnants do contain pulsars. b. Some supernova explosions form white dwarfs instead of the neutron stars necessary for pulsars. c. Pulsars slow down and quit producing the pulses before the supernova remnant dissipates. d. The pulsar may be tipped so that the beams do not sweep past Earth. e. b and carrow_forwardWhich statement about a rotating black hole is correct? O a. The black hole develops an ergosphere, also known as the ring of fire. O b. Inside the ergosphere, it is possible to use some of the black hole's rotational kinetic energy as an energy source. O c. The black hole's ergosphere is a location where photons can have stable orbits around the black hole. O d. The black hole begins to emit Hawking radiation when it begins to rotate. O e. The ergosphere is another name for the inner event horizon.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON