21ST CENT.AST.W/WKBK+SMARTWORK >BI<
6th Edition
ISBN: 9780393415216
Author: Kay
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 38QP
(a)
To determine
The mass of the companion
(b)
To determine
The semi-major axis of the orbit
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In 2004 astronomers reported the discovery of a large Jupiter-sized planet orbiting very
close to the star HD 179949 (hence the term "hot Jupiter"). The orbit was just 1/9 the
distance of Mercury from our Sun, and it takes the planet only 3.09 days to make one orbit
(assumed to be circular).
a. What is the mass of the star? Express your answer in kilograms and as a multiple of
our Sun's mass.
b. How fast (in km/s) is this planet moving?
A. Use the definition of the center of mass to determine the maximum “wobble” velocity of a star of mass M caused by a planet of mass m orbiting at a distance r from the star with a period T. B. Thanks to Kepler, we know that the mass, period, and distance of an orbiting object are actually related. Use Newton’s version of Kepler’s Third Law to determine the maximum “wobble” velocity in terms of M, m, and r.
a. Find the acceleration due to gravity at the surface of a neutron star of mass 1.5 solar masses and having a radius of R = 10.0 km.
b. Find the weight of a 0.120-kg baseball on the surface of this star.
c. Assume the equation U = mgh applies, and calculate the energy that a 70.0-kg person would expend climbing a 1.00-cm-tall mountain on the neutron star.
d. Find the speed needed by a small satellite to maintain a circular orbit with a radius of 2R around the neutron star.
Chapter 13 Solutions
21ST CENT.AST.W/WKBK+SMARTWORK >BI<
Ch. 13.1 - Prob. 13.1CYUCh. 13.2 - Prob. 13.2CYUCh. 13.3 - Prob. 13.3CYUCh. 13.4 - Prob. 13.4CYUCh. 13 - Prob. 1QPCh. 13 - Prob. 2QPCh. 13 - Prob. 3QPCh. 13 - Prob. 4QPCh. 13 - Prob. 5QPCh. 13 - Prob. 6QP
Ch. 13 - Prob. 7QPCh. 13 - Prob. 8QPCh. 13 - Prob. 9QPCh. 13 - Prob. 10QPCh. 13 - Prob. 11QPCh. 13 - Prob. 12QPCh. 13 - Prob. 13QPCh. 13 - Prob. 14QPCh. 13 - Prob. 15QPCh. 13 - Prob. 16QPCh. 13 - Prob. 17QPCh. 13 - Prob. 18QPCh. 13 - Prob. 19QPCh. 13 - Prob. 20QPCh. 13 - Prob. 21QPCh. 13 - Prob. 22QPCh. 13 - Prob. 23QPCh. 13 - Prob. 24QPCh. 13 - Prob. 25QPCh. 13 - Prob. 26QPCh. 13 - Prob. 27QPCh. 13 - Prob. 28QPCh. 13 - Prob. 29QPCh. 13 - Prob. 30QPCh. 13 - Prob. 31QPCh. 13 - Prob. 32QPCh. 13 - Prob. 33QPCh. 13 - Prob. 34QPCh. 13 - Prob. 35QPCh. 13 - Prob. 36QPCh. 13 - Prob. 37QPCh. 13 - Prob. 38QPCh. 13 - Prob. 39QPCh. 13 - Prob. 40QPCh. 13 - Prob. 41QPCh. 13 - Prob. 42QPCh. 13 - Prob. 43QPCh. 13 - Prob. 44QPCh. 13 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Astronomical observatrions of our Milky Way galaxy indicate that it has a mass of about 8.01011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0104 light-years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way.arrow_forwardA neutron star is a cold, collapsed star with nuclear density. A particular neutron star has a mass twice that of our Sun with a radius of 12.0 km. (a) What would be the weight of a 100-kg astronaut on standing on its surface? (b) What does this tell us about landing on a neutron star?arrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.1011 solar masses. A star orbiting on the galaxy's periphery is about 6.0104 light years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 instead, what is the mass of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies.arrow_forward
- (a) What is the approximate force of gravity on a 70kg person due to the Andromeda galaxy, assuming its total mass is 1013 than of our Sun and acts like a single mass 2 Mly away? (b) What is the ratio of this force to the person's weight? Note that Andromeda is the closest large galaxy.arrow_forwardSince 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forwardSuppose that the Earth were collapsed to the size of a small ball bearing, becoming a black hole. a. What would be the orbital period of the Moon, orbiting at a distance of 4x10^5 km? b. What would be the orbital period of a spacecraft orbiting at a distance of 6000 km, the current radius of the Earth? c. What would be the orbital period of a mini-spacecraft orbiting at a distance of 0.1 m above the black hole? Compare the orbital speed in this case to c.arrow_forward
- B3arrow_forwardA rogue black hole with a mass 39 times the mass of the sun drifts into the solar system on a collision course with earth. How far is the black hole from the center of the earth when objects on the earth's surface begin to lift into the air and "fall" up into the black hole? Give your answer as a multiple of the earth's radius. Express your answer using three significant figures. d = ΑΣΦ ? Rearrow_forwardPlease mention all theory parts.arrow_forward
- a. A binary system consists of star A with mass of 3.8 x 100 Kg and star B with mass of 3.2 x 1030 kg. Their centres are separated by 9.8 AU (1.5 x 10¹1m) Calculate how far the centre of mass of the system is from star A. b. What is the reduced mass of such system in part a? c. A point has coordinates (x,y,z) in cartesian coordinate system, use spherical coordinates as generalized coordinates to calculate dy d. Positions of two planets are given as (-4.00, 2.94,-0.10) AU and (6.41, 6.54,-0.37) AU. Find the distance between them? Attach File Browse Local Files Browse Content Collectionarrow_forwardA natural satellite of a distant planet orbits 421,700 km from the planet's center once every 42.5 hours in a uniform, circular orbit. a. What is the orbital speed of the satellite? b. What is the mass of the planet that the satellite orbits? c. What is the orbital speed of a natural satellite that orbits at twice the distance from the center of the same planet (assuming uniform circular motion)? Note: G = 6.67 X 10^-11 Nm^2 / kg^2arrow_forward217% ab (See #4 for Earth mass and radus 5. A satellite has an orbital radius 100 km above the Earth's surface. a. What is the speed of the satellite? b. How many minutes does it take the sātellite to complete one orbit?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY