Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 27E
A torsional oscillator of rotational inertia 1.6 kg·m2 and torsional constant 3.4 N·m/rad has total energy 4.7 J. Find its maximum
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A torsional oscillator of rotational inertia 1.6 kg⋅m2kg⋅m2 and torsional constant 3.4 N⋅m/radN⋅m/rad has a total energy of 5.1 J. What is its maximum angular speed?
A flat uniform circular disk has a mass of 3.00 kg and a radius of 70.0 cm. It is suspended in a horizontal plane by a vertical wire attached to its center. If the disk is rotated 2.50 rad about the wire, a torque of 0.0600 Nm is required to maintain that orientation. Calculate (a) the rotational inertia of the disk about the wire, (b) the torsion constant, and (c) the angular frequency of this torsion pendulum when it is set oscillating.
The balance wheel of an old-fashioned watch oscillates with angular amplitude p rad and period 0.500 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed at displacement p/2 rad, and (c) the magnitude of the angular acceleration at displacement p/4 rad.
Chapter 13 Solutions
Essential University Physics
Ch. 13.1 - A typical human heart rate is about 65 beats per...Ch. 13.2 - Two identical mass-spring systems are displaced...Ch. 13.3 - What happens to the period of a pendulum if (l)...Ch. 13.4 - Figure 13.18 shows the paths traced in the...Ch. 13.5 - Two different mass-spring systems are oscillating...Ch. 13.6 - The figure shows displacement-versus-time graphs...Ch. 13.7 - The photo shows a wineglass shattering in response...Ch. 13 - The vibration frequencies of molecules are much...Ch. 13 - What happens to the frequency of a simple harmonic...Ch. 13 - How does the frequency of a simple harmonic...
Ch. 13 - How would the frequency of a horizontal massspring...Ch. 13 - When in its cycle is the acceleration of an...Ch. 13 - One pendulum consists of a solid rod of mass m and...Ch. 13 - Why is critical damping desirable in a cars...Ch. 13 - Explain why the frequency of a damped system is...Ch. 13 - Opera singers have been known to break glasses...Ch. 13 - What will happen to the period of a massspring...Ch. 13 - Prob. 11ECh. 13 - A violin string playing the note A oscillates at...Ch. 13 - The vibration frequency of a hydrogen chloride...Ch. 13 - The top of a skyscraper sways back and forth,...Ch. 13 - A hummingbirds wings vibrate at about 45 Hz. Whats...Ch. 13 - A 200-g mass is attached to a spring of constant k...Ch. 13 - An automobile suspension has an effective spring...Ch. 13 - A 342-g mass is attached to a spring and undergoes...Ch. 13 - A particle undergoes simple harmonic motion with...Ch. 13 - How long should you make a simple pendulum so its...Ch. 13 - At the heart of a grandfather clock is a simple...Ch. 13 - A 622-g basketball with 24.0-cm diameter is...Ch. 13 - A meter stick is suspended from one end and set...Ch. 13 - A wheel rotates at 600 rpm. Viewed from the edge,...Ch. 13 - The x- and y-components of an objects motion are...Ch. 13 - A 450-g mass on a spring is oscillating at 1.2 Hz....Ch. 13 - A torsional oscillator of rotational inertia 1.6...Ch. 13 - Prob. 28ECh. 13 - The vibration of a piano string can be described...Ch. 13 - A massspring system has b/m = 0/5, where b is the...Ch. 13 - A cars front suspension has a natural frequency of...Ch. 13 - Prob. 32ECh. 13 - Prob. 33ECh. 13 - Prob. 34ECh. 13 - Example 13.2: Repeal the preceding problem, now...Ch. 13 - Example 13.5: A mass–spring system is oscillating...Ch. 13 - Prob. 37ECh. 13 - Example 13.5: A sample pendulum is swinging with...Ch. 13 - Example 13.5: A simple pendulum of muss m is...Ch. 13 - A simple model for carbon dioxide consists of...Ch. 13 - Prob. 41PCh. 13 - The human eye and muscles that hold it can be...Ch. 13 - A mass m slides along a frictionless horizontal...Ch. 13 - Prob. 44PCh. 13 - A physics student, bored by a lecture on simple...Ch. 13 - A pendulum of length L is mounted in a rocket....Ch. 13 - The protein dynein powers the flagella that propel...Ch. 13 - A mass is attached to a vertical spring, which...Ch. 13 - Derive the period of a simple pendulum by...Ch. 13 - A solid disk of radius R is suspended from a...Ch. 13 - A thin steel beam is suspended from a crane and is...Ch. 13 - A cyclist turns her bicycle upside down to repair...Ch. 13 - An object undergoes simple harmonic motion in two...Ch. 13 - The muscles that drive insect wings minimize the...Ch. 13 - Prob. 55PCh. 13 - If Jane and Tarzan are initially 8.0 m apart in...Ch. 13 - A small mass measuring device (SMMD) used for...Ch. 13 - A thin, uniform hoop of mass M and radius R is...Ch. 13 - A mass m is mounted between two springs with...Ch. 13 - Prob. 60PCh. 13 - Show that the potential energy of a simple...Ch. 13 - The total energy of a massspring system is the sum...Ch. 13 - A solid cylinder of mass M and radius R is mounted...Ch. 13 - A mass m is free to slide on a frictionless track...Ch. 13 - A 250-g mass is mounted on a spring of constant k...Ch. 13 - A harmonic oscillator is underdamped if the...Ch. 13 - A massless spring with k = 74 N/m hangs from the...Ch. 13 - A meter stick is suspended from a frictionless rod...Ch. 13 - A particle of mass m has potential energy given by...Ch. 13 - Two balls with the same unknown mass m are mounted...Ch. 13 - Two mass-spring systems with the same mass are...Ch. 13 - Two mass-spring systems have the same mass and the...Ch. 13 - Prob. 73PCh. 13 - A 500-g block on a frictionless, horizontal...Ch. 13 - Repeat Problem 64 for a small solid ball of mass M...Ch. 13 - A disk of radius R is suspended from a pivot...Ch. 13 - Youre a structural engineer working on a design...Ch. 13 - Show that x(t) = a cos t bsin t represents simple...Ch. 13 - Youre working for the summer with an ornithologist...Ch. 13 - While waiting for your plane to take off, you...Ch. 13 - Youre working for a playground equipment company,...Ch. 13 - The pendulum in an antique clock consists of a...Ch. 13 - This problem explores the nonlinear pendulum...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. When were the Bohr model the quantum-mechanical model for the atom developed? What purpose do these models s...
Introductory Chemistry (6th Edition)
WHAT IF? Consider two species that diverged while geographically separated but resumed contact before reproduct...
Campbell Biology in Focus (2nd Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Community 1 contains 100 individuals distributed among four species: 5A, 5B, 85C, and 5D. Community 2 contains ...
Campbell Biology (11th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
78. Intermittent windshield wipers use a variable resistor in an RC circuit to set the delay between successive...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the simplified single-piston engine in Figure CQ15.13. Assuming the wheel rotates with constant angular speed, explain why the piston rod oscillates in simple harmonic motion.arrow_forwardThe total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forward
- For each expression, identify the angular frequency , period T, initial phase and amplitude ymax of the oscillation. All values are in SI units. a. y(t) = 0.75 cos (14.5t) b. vy (t) = 0.75 sin (14.5t + /2) c. ay (t) = 14.5 cos (0.75t + /2) 16.3arrow_forwardThe balance wheel of a watch oscillates with angular amplitude 0.59?0.59π rad and period 0.18 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed of the wheel at displacement 0.59?/20.59π/2 rad, and (c) the magnitude of the angular acceleration at displacement 0.59?/40.59π/4 rad.arrow_forwardAn engineer has an odd-shaped 10 kg object and needs to find its rotational inertia about an axis through its center of mass. The object is supported on a wire stretched along the desired axis. The wire has a torsion constant k = 0.50 N. m. If this torsion pendulum oscillates through 20 cycles in 50 s, what is the rotational inertia of the object?arrow_forward
- Chapter 15, Problem 039 The balance wheel of a watch oscillates with angular amplitude 0.64n rad and period 0.68 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed of the wheel at displacement 0.64n/2 rad, and (c) the magnitude of the angular acceleration at displacement 0.64n,/4 rad. (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardThe cylinder is confined by the brake as shown in (Figure 1), where = 0.4. The spring has a stiffness of k= 3 MN/m and an unstretched length of 60 mm. End C of member ABC slides freely along the smooth vertical guide. Figure 400 mm. 200 mm 250 mm 1 of 1 Determine the required compression in the spring in order to resist a torque of 800 Nm on the cylinder. Express your answer to three significant figures and include the appropriate units. S= ■ Value Submit μÅ Provide Feedback Request Answer → Units ?arrow_forwardA dynamic torsional system, consisting of five disks keyed to a 1-inch diameter steel shaft, is vibrating freely at a natural frequency. An end disk has a mass moment of inertia J₁ of 5 in-lb-sec², while the next one to it has a J₂ of 10 in-lb-sec², The distance between these disks is 8 in. The amplitude ratio of these disks ϴ₁/ϴ₂ is -2. What is the natural frequency in cpm? (For steel use G = 12 x 10⁶ psi)arrow_forward
- m, l A pendulum of length l with a uniformly distributed mass m is given. m = 3 kg, l = 4.2 m, g = 9.81 m/s?. Find the value of initial angular velocity wn of the pendulum in the drawn (initial) position if we know that it passes the bottom position with an angular velocity 2wo? Wo = 1/s.arrow_forwardA solid cylinder of mass M and radius R is mounted to an axle through its center. The axle is attached to a horizontal spring of constant k, as shown in the figure. Initially the cylinder is at rest and the spring is un-stretched. The cylinder is then pulled a distance A and released. The cylinder rolls back and forth without slipping. A) Determine the angular frequency ωfreq and period T of the simple harmonic motion of this spring-rolling mass system? Express your answer in terms of k and M. B) Assume that we have the same spring and mass system, onlynow the cylinder is released from rest on a frictionless surface at a distance A from the equilibrium position. What is the period of the simple harmonic motion of this system? Express your answer in terms of k and M.arrow_forwardanswer in paper please. Book reference : university physics with modern physics 13th editionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY