
(a)
To determine: The redox pair out of NAD+/NADH and pyruvate/lactate that has the greater tendency to lose electrons.
Introduction: The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the
(a)

Explanation of Solution
Explanation:
The capability of gaining electrons by any compound is termed as standard reduction potential. The capability increases with the greater value of
The value of
(b)
To determine: The redox pair out of NAD+/NADH and pyruvate/lactate that is the stronger oxidizing agent.
Introduction:
The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the cellular respiration is known as Nicotinamide adenine dinucleotide (NAD+). It acts as an electron carrier in the electron transport chain (ETC).
(b)

Explanation of Solution
Explanation:
The “oxidizing agent” is the term for the compound, which can easily acquire electrons. The NAD+/NADH have more capability to lose electrons. So, the NAD+/NADH are the strong reducing agent. Therefore, the pyruvate/lactate is stronger oxidizing agent.
(c)
To determine: The direction, in which the reaction proceeds if the reactants have a concentration of 1M and product at pH 7and at 25°C.
Introduction:
The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the cellular respiration is known as Nicotinamide adenine dinucleotide (NAD+). It acts as an electron carrier in the electron transport chain (ETC).
(c)

Explanation of Solution
Explanation: All the given conditions are favorable for the proceeding of reaction in further direction. This will result in formation of lactate from pyruvate. The equation is given below:
Conclusion:
The reaction will proceed in right direction with given conditions.
(d)
To determine: The standard free energy for conversion of pyruvate to lactate.
Introduction:
The biochemical process, in which conversion of a sugar molecule (glucose) into lactic acid molecule takes place and cellular energy is released is called lactic acid fermentation. Lactic acid fermentation occurs in the animal cells, such as muscle cells and bacteria. The pyruvate molecule is utilized in the reaction and two molecules of lactic acid are formed. The products, such as cheese and yogurt are formed by the use of lactic acid fermentation. One enzyme which is involved in catalyzing the reaction is lactate dehydrogenase.
(d)

Explanation of Solution
Explanation:
The
The summation of the reactions is as follows:
The “standard free-energy change” for an “oxidation-reduction reaction” is directly proportional to the “difference in standard reduction potentials” of “two half-cells”. The formula is
Conclusion:
The standard free energy for conversion of pyruvate to lactate is -26kj/mol.
(e)
To determine: The equilibrium constant for the conversion of pyruvate to lactate.
Introduction:
The biochemical process, in which conversion of a sugar molecule (glucose) into lactic acid molecule takes place and cellular energy is released is called lactic acid fermentation. Lactic acid fermentation occurs in the animal cells, such as muscle cells and bacteria. The pyruvate molecule is utilized in the reaction and two molecules of lactic acid are formed. The products, such as cheese and yogurt are formed by the use of lactic acid fermentation. One enzyme which is involved in catalyzing the reaction is lactate dehydrogenase.
(e)

Explanation of Solution
Explanation:
The value of gas constant
The equation
The value of
Conclusion:
The equilibrium constant for the conversion of pyruvate to lactate is
Want to see more full solutions like this?
Chapter 13 Solutions
Lehninger Principles of Biochemistry
- 7. What is the correct name of the following tripeptide? A) Ile-Met-Ser B) Leu-Cys-Thr C) Val-Cys-Ser D) Ser-Cys-Leu E) Leu-Cys-Ser H₂N!!!!! N H ΖΙ .SH SF H IN OH OHarrow_forwardPlease draw out the following metabolic pathways: (Metabolic Map) Mitochondrion: TCA Cycle & GNG, Electron Transport, ATP Synthase, Lipolysis, Shuttle Systems Cytoplasm: Glycolysis & GNG, PPP (Pentose Phosphate Pathway), Glycogen, Lipogenesis, Transporters and Amino Acids Control: Cori/ Glc-Ala cycles, Insulin/Glucagon Reg, Local/Long Distance Regulation, Pools Used Correctlyarrow_forwardPlease help provide me an insight of what to draw for the following metabolic pathways: (Metabolic Map) Mitochondrion: TCA Cycle & GNG, Electron Transport, ATP Synthase, Lipolysis, Shuttle Systems Cytoplasm: Glycolysis & GNG, PPP (Pentose Phosphate Pathway), Glycogen, Lipogenesis, Transporters and Amino Acids Control: Cori/ Glc-Ala cycles, Insulin/Glucagon Reg, Local/Long Distance Regulation, Pools Used Correctlyarrow_forward
- f. The genetic code is given below, along with a short strand of template DNA. Write the protein segment that would form from this DNA. 5'-A-T-G-G-C-T-A-G-G-T-A-A-C-C-T-G-C-A-T-T-A-G-3' Table 4.5 The genetic code First Position Second Position (5' end) U C A G Third Position (3' end) Phe Ser Tyr Cys U Phe Ser Tyr Cys Leu Ser Stop Stop Leu Ser Stop Trp UCAG Leu Pro His Arg His Arg C Leu Pro Gln Arg Pro Leu Gin Arg Pro Leu Ser Asn Thr lle Ser Asn Thr lle Arg A Thr Lys UCAG UCAC G lle Arg Thr Lys Met Gly Asp Ala Val Gly Asp Ala Val Gly G Glu Ala UCAC Val Gly Glu Ala Val Note: This table identifies the amino acid encoded by each triplet. For example, the codon 5'-AUG-3' on mRNA specifies methionine, whereas CAU specifies histidine. UAA, UAG, and UGA are termination signals. AUG is part of the initiation signal, in addition to coding for internal methionine residues. Table 4.5 Biochemistry, Seventh Edition 2012 W. H. Freeman and Company B eviation: does it play abbreviation:arrow_forwardAnswer all of the questions please draw structures for major productarrow_forwardfor glycolysis and the citric acid cycle below, show where ATP, NADH and FADH are used or formed. Show on the diagram the points where at least three other metabolic pathways intersect with these two.arrow_forward
- answer the questions please all of them should be answeredarrow_forwardBurk plot is shown below. Calculate Km and max for this enzyme. show workarrow_forwardInsert Format Tools Extensions Help Normal text ▾ Arial C 2 10 3 + BIUA Student Guide (continued) Record data and conclusions about the mystery food sample either below or in a lab notebook. Step 2: Protein Test (Biuret Solution) Gelatin Water [Mystery Food (Positive Control) (Negative Control) Sample pink purple no change no change They mystery food sample does not contain protein because the color of the test tube wasn't pink or purple Color Conclusion They mystery food sample does not contain protein because the color of the test tube wasn't pink or purple Step 3: Lipid Test (Sudan Red Solution) Vegetable Oil Water (Positive Control) (Negative Control) Mystery Food Sample floating red no change floating red the mystery food dosnt contain lipids because the test tube has floating red 75 % 87 8 9 7 ChromeOS C Device will pow 26.battery lea powerarrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





