
(a)
To determine: The redox pair out of NAD+/NADH and pyruvate/lactate that has the greater tendency to lose electrons.
Introduction: The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the
(a)

Explanation of Solution
Explanation:
The capability of gaining electrons by any compound is termed as standard reduction potential. The capability increases with the greater value of
The value of
(b)
To determine: The redox pair out of NAD+/NADH and pyruvate/lactate that is the stronger oxidizing agent.
Introduction:
The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the cellular respiration is known as Nicotinamide adenine dinucleotide (NAD+). It acts as an electron carrier in the electron transport chain (ETC).
(b)

Explanation of Solution
Explanation:
The “oxidizing agent” is the term for the compound, which can easily acquire electrons. The NAD+/NADH have more capability to lose electrons. So, the NAD+/NADH are the strong reducing agent. Therefore, the pyruvate/lactate is stronger oxidizing agent.
(c)
To determine: The direction, in which the reaction proceeds if the reactants have a concentration of 1M and product at pH 7and at 25°C.
Introduction:
The coenzyme being used in the “oxidation-reduction” reactions in the cell associated with the cellular respiration is known as Nicotinamide adenine dinucleotide (NAD+). It acts as an electron carrier in the electron transport chain (ETC).
(c)

Explanation of Solution
Explanation: All the given conditions are favorable for the proceeding of reaction in further direction. This will result in formation of lactate from pyruvate. The equation is given below:
Conclusion:
The reaction will proceed in right direction with given conditions.
(d)
To determine: The standard free energy for conversion of pyruvate to lactate.
Introduction:
The biochemical process, in which conversion of a sugar molecule (glucose) into lactic acid molecule takes place and cellular energy is released is called lactic acid fermentation. Lactic acid fermentation occurs in the animal cells, such as muscle cells and bacteria. The pyruvate molecule is utilized in the reaction and two molecules of lactic acid are formed. The products, such as cheese and yogurt are formed by the use of lactic acid fermentation. One enzyme which is involved in catalyzing the reaction is lactate dehydrogenase.
(d)

Explanation of Solution
Explanation:
The
The summation of the reactions is as follows:
The “standard free-energy change” for an “oxidation-reduction reaction” is directly proportional to the “difference in standard reduction potentials” of “two half-cells”. The formula is
Conclusion:
The standard free energy for conversion of pyruvate to lactate is -26kj/mol.
(e)
To determine: The equilibrium constant for the conversion of pyruvate to lactate.
Introduction:
The biochemical process, in which conversion of a sugar molecule (glucose) into lactic acid molecule takes place and cellular energy is released is called lactic acid fermentation. Lactic acid fermentation occurs in the animal cells, such as muscle cells and bacteria. The pyruvate molecule is utilized in the reaction and two molecules of lactic acid are formed. The products, such as cheese and yogurt are formed by the use of lactic acid fermentation. One enzyme which is involved in catalyzing the reaction is lactate dehydrogenase.
(e)

Explanation of Solution
Explanation:
The value of gas constant
The equation
The value of
Conclusion:
The equilibrium constant for the conversion of pyruvate to lactate is
Want to see more full solutions like this?
Chapter 13 Solutions
EBK LEHNINGER PRINCIPLES OF BIOCHEMISTR
- In a diffraction experiment of a native crystal, intensity of reflection (-1 0 6) is equivalent to the intensity of reflection (1 0 -6). true or false?arrow_forwardin an x-ray diffraction experiment, moving the detector farther away from the crystal will allow collection of reflection of reflections with high Miller indices. true or false?arrow_forwardShow the mechanism for the acid-catalyzed formation of an [α-1,6] glycosidic linkagebetween two molecules of α-D-glucopyranose.arrow_forward
- Label the following polysaccharide derivatives as reducing or nonreducing. a. C. b. HO CH₂OH CH2OH OH OH OH OH OH HOCH₂ OH OH OH HOCH₂ HO HO HO OH OH ΙΟ CH₂OH OH OH "OH OHarrow_forwardFor a red blood cell (erythrocyte) undergoing active glycolysis, briefly explain how increases in concentration of the following factors are likely to affect glycolytic flux. a. ATP b. AMP c. F-1,6-BP d. F-2,6-BP e. Citrate f. Glucose-6-phosphatearrow_forwardThe ∆G°’ for hydrolysis of phosphoenol pyruvate is -62.2 kJ/mol. The standard freeenergy of ATP hydrolysis is -30.5 kJ/mol. A. What is the standard free energy and K eq of the spontaneous reaction betweenADP/ATP and phosphoenol pyruvate. B. Repeat A for F-1,6-BP (∆G°’=-16.7 kJ/mol) and 1,3-BPG (∆G°’=-49.6 kJ/mol)hydrolysis. C. If the ATP and ADP concentrations are 8mM and 1mM respectively, what would bethe ratio of pyruvate/phosphoenolpyruvate at equilibrium?arrow_forward
- Answerarrow_forward13. Which one is the major organic product of the following sequence of reactions? A OH (CH3)2CHCH2COOH SOCI2 CH3OH 1. CH3MgBr 2. H₂O, H+ B C D OH E OHarrow_forward14. Which one is the major organic product of the following sequence of reactions? (CH3)2CH-COCI CH3OH 1. DIBALH, -78°C 1. PhCH2MgBr ? 2. H2O, HCI 2. H2O, HCI OH OMe A Ph B Ph OH Ph C OMe Ph D E OH .Pharrow_forward
- 6. Which one is the major organic product obtained from the following reaction? CO₂Me 1. LiAlH4 2. H₂O CH₂OH CH₂OCH3 5555 HO A B HO C HO D CH₂OH E ?arrow_forward1. (10 points) Pulverized coal pellets, which may be ° approximated as carbon spheres of radius r = 1 mm, are burned in a pure oxygen atmosphere at 1450 K and 1 atm. Oxygen is transferred to the particle surface by diffusion, where it is consumed in the reaction C + O₂ →> CO₂. The reaction rate is first order and of the form No2 = k₁C₁₂(r), where k₁ = 0.1 m/s. Neglecting changes in r, determine the steady-state O₂ molar consumption rate in kmol/s. At 1450 K, the binary diffusion coefficient for O2 and CO2 is 1.71 x 10ª m²/s.arrow_forward2. (20 points) Consider combustion of hydrogen gas in a mixture of hydrogen and oxygen adjacent to the metal wall of a combustion chamber. Combustion occurs at constant temperature and pressure according to the chemical reaction 2H₂+ O₂→ 2H₂O. Measurements under steady-state conditions at 10 mm from the wall indicate that the molar concentrations of hydrogen, oxygen, and water vapor are 0.10, 0.10, and 0.20 kmol/m³, respectively. The generation rate of water vapor is 0.96x102 kmol/m³s throughout the region of interest. The binary diffusion coefficient for each of the species (H, O̟, and H₂O) in the remaining species is 0.6 X 10-5 m²/s. (a) Determine an expression for and make a qualitative plot of C as a function of distance from the wall. H2 (b) Determine the value of C2 at the wall. H2 (c) On the same coordinates used in part (a), sketch curves for the concentrations of oxygen and water vapor. This will require you to calculate Co, and C. 02 H20 (d) What is the molar flux of water…arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





