
(a)
To determine: The equilibrium constant for the reaction for formation of glucose 6-phosphate at 37°C and whether this reaction is a reasonable
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(a)

Explanation of Solution
The reaction for the formation of glucose-6-phosphate by reaction of inorganic phosphate and glucose is as follows:
The value of gas constant R is 0.0083 kJ/ mole K. The equilibrium constant at the given temperature 37°C (310 K) is calculated as follows-
The value of equilibrium constant of glucose-6-phosphate is determined as follows:
The given reaction will not be favorable based on the levels of glucose in a cell, as it will exceed the concentration of
(b)
To determine: Whether the route is physiologically reasonable when the maximum solubility of glucose is less than 1M.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(b)

Explanation of Solution
The value of equilibrium constant is also determined as follows:
This route will be unfavorable because the given concentration of glucose exceeds the permissible limit of 1M. The concentration of glucose at given conditions is 11 M and the reaction will not be physiologically feasible because the maximum limit is exceeded by given concentration of glucose.
(c1)
To determine: The
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(c1)

Explanation of Solution
The two given
The value of gas constant R is 0.0083 kJ/ mole K. The equilibrium constant at the given temperature 37°C (310 K) is calculated as follows-
The
(c2)
To determine: The concentration of glucose needed to achieve 250 mM intracellular concentration of glucose-6-phosphate when the concentrations of ATP and ADP are 3.3 mM and 1.32 mM.
Introduction:
The glycolysis is the process of series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A).
(c2)

Explanation of Solution
The value of equilibrium constant is determined as follows:
The concentration of glucose needed is
(c3)
To discuss: Whether this coupling process provides feasible route at least in principle for phosphorylation of glucose in the cell.
Introduction:
The glycolysis is the process of series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A).
(c3)

Explanation of Solution
This route will be favorable because the given concentration of glucose does not exceed the permissible limit of 1 M. The coupling process will be feasible for given route for phosphorylation of glucose in the cell.
(d)
To determine: Whether the route is reasonable given that the coupling requires a common intermediate, the route uses ATP hydrolysis to raise the intracellular concentration of Pi.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(d)

Explanation of Solution
The high levels of phosphates are needed for the precipitation of divalent cations of phosphate salts under normal physiological conditions, and thus, the condition will not be possible. Therefore, the given route is not reasonable for the requirement of common intermediate in coupling.
(e)
To determine: The advantages of route of transfer of phosphate group by ATP to glucose by enzyme glucokinase.
Introduction:
The glycolysis is a series of reactions converting the glucose molecules into two molecules of pyruvate in the presence of oxygen. The pyruvate undergoes series of reactions in the citric acid cycle and converts into acetyl CoA (acetyl coenzyme A).
(e)

Explanation of Solution
This reaction of transfer of phosphate group to glucose by ATP is catalyzed by glucokinase. The phosphate group is transferred and the potential of ATP is used and generation of high levels of intermediate molecules is not required. The reaction is catalyzed by glucokinase and no intermediates are formed by utilization of potential of ATP.
Want to see more full solutions like this?
Chapter 13 Solutions
EBK LEHNINGER PRINCIPLES OF BIOCHEMISTR
- What is the formation of glycosylated hemoglobin (the basis for the HbA1c test)? Can you describe it?arrow_forwardPlease analze the gel electrophoresis column of the VRK1 kinase (MW: 39.71 kDa). Also use a ruler to measure the length of the column in centimeters and calculate the MW of each band observed. Lane 1: buffer Lane 2 : Ladder Lane 3: Lysate Lane 4: Flowthrough Lane 5: Wash Lanes 6-8: E1, E2, E3 Lane 9: Dialyzed VRK1 Lane 10: LDHarrow_forwardDo sensory neurons express ACE2 or only neurolipin-1 receptors for COVID19 virus particle binding?arrow_forward
- Explain the process of CNS infiltration of COVID19 through sensory neurons from beginning to end, including processes like endocytosis, the different receptors/proteins that are involved, how they are transported and released, etc.,arrow_forwardH2C CH2 HC-COOO CH2 ܘHO-C-13c-O isocitrate C-S-COA H213c CH2 C-OO 13C-S-COA CH2 C-00 the label will not be present in succinyl CoA C-S-COA succinyl-CoAarrow_forwardA culture of kidneys cells contains all intermediates of the citric acid cycle. It is treated with an irreversible inhibitor of malate dehydrogenase, and then infused withglucose. Fill in the following list to account for the number of energy molecules that are formed from that one molecule of glucose in this situation. (NTP = nucleotidetriphosphate, e.g., ATP or GTP)Net number of NTP:Net number of NADH:Net number of FADH2:arrow_forward
- 16. Which one of the compounds below is the final product of the reaction sequence shown here? OH A B NaOH Zn/Hg aldol condensation heat aq. HCI acetone C 0 D Earrow_forward2. Which one of the following alkenes undergoes the least exothermic hydrogenation upon treatment with H₂/Pd? A B C D Earrow_forward6. What is the IUPAC name of the following compound? A) (Z)-3,5,6-trimethyl-3,5-heptadiene B) (E)-2,3,5-trimethyl-1,4-heptadiene C) (E)-5-ethyl-2,3-dimethyl-1,5-hexadiene D) (Z)-5-ethyl-2,3-dimethyl-1,5-hexadiene E) (Z)-2,3,5-trimethyl-1,4-heptadienearrow_forward
- Consider the reaction shown. CH2OH Ex. CH2 -OH CH2- Dihydroxyacetone phosphate glyceraldehyde 3-phosphate The standard free-energy change (AG) for this reaction is 7.53 kJ mol-¹. Calculate the free-energy change (AG) for this reaction at 298 K when [dihydroxyacetone phosphate] = 0.100 M and [glyceraldehyde 3-phosphate] = 0.00300 M. AG= kJ mol-1arrow_forwardIf the pH of gastric juice is 1.6, what is the amount of energy (AG) required for the transport of hydrogen ions from a cell (internal pH of 7.4) into the stomach lumen? Assume that the membrane potential across this membrane is -70.0 mV and the temperature is 37 °C. AG= kJ mol-1arrow_forwardConsider the fatty acid structure shown. Which of the designations are accurate for this fatty acid? 17:2 (48.11) 18:2(A9.12) cis, cis-A8, A¹¹-octadecadienoate w-6 fatty acid 18:2(A6,9)arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





