Concept explainers
(a)
Interpretation:
The electron-pair geometry for the molecules
Concept introduction:
The electron pairs in Lewis diagrams repel each other in real molecule and thus they distribute themselves in positions around the central atoms that are as far away from one another. This arrangement of electron pairs is called electron-pair geometry. The electron pairs may be shared in covalent bond, or they may be lone pairs.
Answer to Problem 21E
The Lewis diagrams for
, and
The wedge-and-dash diagrams for
, and
The electron pair geometry for
Explanation of Solution
To write the Lewis diagram for a compound first the number of valence electrons is to be calculated. In the molecule,
In the molecule,
Similarly, in the molecule
The atom which is least electronegative is the central atom. In
Figure 1
In
Figure 2
In
Figure 3
The electron-pair geometry depends on the number of electron pairs around the central atom. In the molecule
The wedge-and-dash diagram for the molecules
Figure 4
The wedge-and-dash diagram for the molecules
Figure 5
The wedge-and-dash diagram for the molecules
Figure 6
The Lewis and wedge-and-dash diagrams for
(b)
Interpretation:
The molecular geometry prdicted by the valence shell electron-pair repulsion theory for the molecules
Concept introduction:
Molecular geometry is the precise term that is used to describe the shape of molecules and arrangement of atoms around the central atom. The molecular geometry of a molecule is predicted by valence shell electron-pair repulsion theory or in short VSEPR theory. VSEPR theory applies to substances in which a second period element is bonded to two, three, four, or other atoms.
Answer to Problem 21E
The Lewis diagrams for
, and
The wedge-and-dash diagrams for
, and
The molecular geometry for
Explanation of Solution
To write the Lewis diagram for a compound first the number of valence electrons is to be calculated. In the molecule,
In the molecule,
Similarly, in the molecule,
The atom which is least electronegative is the central atom. In
Figure 1
In
Figure 2
In
Figure 3
The molecular geometry depends on the number of electron pairs around the central atom and the number of lone pair on the central atom. In the molecule
The wedge-and-dash diagram for the molecules
Figure 4
The wedge-and-dash diagram for the molecules
Figure 5
The wedge-and-dash diagram for the molecules
Figure 6
The Lewis and wedge-and-dash diagrams for
Want to see more full solutions like this?
Chapter 13 Solutions
EBK INTRODUCTORY CHEMISTRY: AN ACTIVE L
- Nonearrow_forwardWe know that trivalent cations (Cr3+, Mn3+, V3+) with a large difference between octahedral and tetrahedral EECC, form exclusively normal spinels. Bivalent cations (Ni2+ and Cu2+) with high EECC, form inverse spinels. Is this statement correct?arrow_forward(b) Draw the product A that would be formed through the indicated sequence of steps from the given starting material. MeO (1) Br₂, hv (2) NaOEt, EtOH, A (3) BH3:THF (4) H₂O2, HO- B H₂C. CH₂ OH Editarrow_forward
- Small changes in secondary; tertiary primary; secondary primary; tertiary tertiary; secondary protein structure may lead to big changes in protein structures.arrow_forward? The best reagent to achieve the transformation shown is: A Na/NH3 B KCN C HCN CN D H2BCN ய E Transformation is not possible in one steparrow_forwardShow work. don't give Ai generated solution. Don't copy the answer anywherearrow_forward
- συ 3. Determine the rate law equation for a chemical re Mild The following is a chemical reaction: Fron law, 2A+2B C+D+E Run The reaction is found to be first order with respect to A and second order with respect to B. Write the rate law equation for the reaction. (include K, but you can't find the value). 1 How would doubling the concentration of reactant A affect the reaction rate? How would doubling the concentration of reactant B affect the reaction rate? 2 3 K Using yoarrow_forwardHeteropolyacids behave as strong Bronsted acids, compatible with benign oxidants.arrow_forwardygfarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning