Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 20Q
A tall Styrofoam cup is filled with water. Two holes are punched in the cup near the bottom, and water begins rushing out. If the cup is dropped so it falls freely, will the water continue to flow from the holes? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 13.3 - Prob. 1AECh. 13.3 - A dam holds hack a lake that is 85 m deep at the...Ch. 13.7 - On the hydrometer of Example 1311, will the marks...Ch. 13.7 - Which of the following objects, submerged in...Ch. 13.7 - Which of the following objects, submerged in...Ch. 13.9 - As water in a level pipe passes from a narrow...Ch. 13.10 - Return to Chapter-Opening Question 2, page 339,...Ch. 13 - If one material has a higher density than another,...Ch. 13 - Airplane travelers sometimes note that their...Ch. 13 - The three containers in Fig. 1343 are filled with...
Ch. 13 - Consider what happens when you push both a pin and...Ch. 13 - A small amount of water is boiled in a 1-gallon...Ch. 13 - Prob. 6QCh. 13 - An ice cube floats in a glass of water filled to...Ch. 13 - Will an ice cube float in a glass of alcohol? Why...Ch. 13 - A submerged can of Coke will sink, but a can of...Ch. 13 - Why dont ships made of iron sink?Ch. 13 - Explain how the tube in Fig. 1344, known as a...Ch. 13 - A barge filled high with sand approaches a low...Ch. 13 - Explain why helium weather balloons, which are...Ch. 13 - A row boat floats in a swimming pool, and the...Ch. 13 - Will an empty balloon have precisely the same...Ch. 13 - Why do you float higher in salt water than in...Ch. 13 - If you dangle two pieces of paper vertically, a...Ch. 13 - Why does the stream of water from a faucet...Ch. 13 - Prob. 19QCh. 13 - A tall Styrofoam cup is filled with water. Two...Ch. 13 - Why do airplanes normally lake off into the wind?Ch. 13 - Two ships moving in parallel paths close to one...Ch. 13 - Prob. 23QCh. 13 - Prob. 24QCh. 13 - (I) The approximate volume of the granite monolith...Ch. 13 - (I) What is the approximate mass of air in a...Ch. 13 - (I) If you tried to smuggle gold bricks by filling...Ch. 13 - (I) State your mass and then estimate your volume....Ch. 13 - (II) A bottle has a mass of 35.00g when empty and...Ch. 13 - (II) If 5.0L of antifreeze solution (specific...Ch. 13 - Prob. 7PCh. 13 - (I) Estimate the pressure needed to raise a column...Ch. 13 - (I) Estimate the pressure exerted on a floor by...Ch. 13 - (I) What is the difference in blood pressure...Ch. 13 - (II) How high would the level be in an alcohol...Ch. 13 - (II) In a movie, Tarzan evades his captors by...Ch. 13 - (II) The maximum gauge pressure in a hydraulic...Ch. 13 - (II) The gauge pressure in each of the four tires...Ch. 13 - (II) (a) Determine the total force and the...Ch. 13 - (II) A house at the bottom of a hill is fed by a...Ch. 13 - (II) Water anti then oil (which dont mix) are...Ch. 13 - (II) In working out his principle, Pascal showed...Ch. 13 - (II) What is the normal pressure of the atmosphere...Ch. 13 - (II) A hydraulic press for compacting powdered...Ch. 13 - (II) An open-tube mercury manometer is used to...Ch. 13 - (III) A beaker of liquid accelerates from rest, on...Ch. 13 - (III) Water stands at a height h behind a vertical...Ch. 13 - (III) Estimate the density of the water 5.4 km...Ch. 13 - (III) A cylindrical bucket of liquid (density ) is...Ch. 13 - (I) What fraction of a piece of iron will he...Ch. 13 - (I) A geologist finds that a Moon rock whose mass...Ch. 13 - (II) A crane lifts the 16,000-kg steel hull of a...Ch. 13 - (II) A spherical balloon has a radius of 7.35 m...Ch. 13 - (II) A 74-kg person has an apparent mass of 54 kg...Ch. 13 - (II) What is the likely identity of a metal (see...Ch. 13 - (II) Calculate the true mass (in vacuum) of a...Ch. 13 - Prob. 33PCh. 13 - (II) A scuba diver and her gear displace a volume...Ch. 13 - (II) The specific gravity of ice is 0.917, whereas...Ch. 13 - (II) Archimedes principle can be used not only to...Ch. 13 - (II) (a) Show that the buoyant force FB on a...Ch. 13 - (II) A cube of side length 10.0 cm and made of...Ch. 13 - (II) How many helium-filled balloons would it take...Ch. 13 - Prob. 40PCh. 13 - (III) If an object floats in water, its density...Ch. 13 - (III) A 3.25-kg piece of wood (SG = 0.50) floats...Ch. 13 - (I) A 15-cm-radius air duct is used to replenish...Ch. 13 - Prob. 44PCh. 13 - (I) How fast does water flow from a hole at the...Ch. 13 - (II) A fish tank has dimensions 36 cm wide by 1.0...Ch. 13 - (II) What gauge pressure in the water mains is...Ch. 13 - Prob. 48PCh. 13 - (II) A 180-km/h wind blowing over the flat roof of...Ch. 13 - (II) A 6.0-cm-diameter horizontal pipe gradually...Ch. 13 - (II) Estimate the air pressure inside a category 5...Ch. 13 - (II) What is the lift (in newtons) due to...Ch. 13 - (II) Show that the power needed to drive a fluid...Ch. 13 - (II) Water at a gauge pressure of 3.8 atm at...Ch. 13 - (II) In Fig. 1355, take into account the speed of...Ch. 13 - (II) Suppose the top surface of the vessel in Fig....Ch. 13 - (II) You are watering your lawn with a hose when...Ch. 13 - (III) Suppose the opening in the tank of Fig. 1355...Ch. 13 - Prob. 59PCh. 13 - (III) (a) Show that the flow speed measured by a...Ch. 13 - Prob. 61PCh. 13 - (III) A fire hose exerts a force on the person...Ch. 13 - (II) A viscometer consists of two concentric...Ch. 13 - Prob. 64PCh. 13 - (I) Engine oil (assume SAE 10, Table 133) passes...Ch. 13 - Prob. 66PCh. 13 - (II) What diameter must a 15.5-m-long air duct...Ch. 13 - (II) What must be the pressure difference between...Ch. 13 - (II) Poiseuilles equation does not hold if the...Ch. 13 - Prob. 70PCh. 13 - (III) A patient is to be given a blood...Ch. 13 - (I) If the force F needed to move the wire in Fig....Ch. 13 - (I) Calculate the force needed to move the wire in...Ch. 13 - (II) The surface tension of a liquid can be...Ch. 13 - (III) Estimate the diameter of a steel needle that...Ch. 13 - (III) Show that inside a soap bubble, there must...Ch. 13 - (III) A common effect of surface tension is the...Ch. 13 - A 2.8-N force is applied to the plunger of a...Ch. 13 - Intravenous infusions are often made under...Ch. 13 - A beaker of water rests on an electronic balance...Ch. 13 - Estimate the difference in air pressure between...Ch. 13 - A hydraulic lift is used to jack a 920-kg car 42...Ch. 13 - When you ascend or descend a great deal when...Ch. 13 - Giraffes are a wonder of cardiovascular...Ch. 13 - Suppose a person can reduce the pressure in his...Ch. 13 - Airlines are allowed to maintain a minimum air...Ch. 13 - A simple model (Fig. 13-57) considers a continent...Ch. 13 - A ship, carrying fresh water to a desert island in...Ch. 13 - During ascent, and especially during descent,...Ch. 13 - A raft is made of 12 logs lashed together. Each is...Ch. 13 - Estimate the total mass of the Earths atmosphere,...Ch. 13 - Prob. 92GPCh. 13 - Four lawn sprinkler heads are fed by a...Ch. 13 - A bucket of water is accelerated upward at 1.8 g....Ch. 13 - The stream of water from a faucet decreases in...Ch. 13 - You need to siphon water from a clogged sink. The...Ch. 13 - An airplane has a mass of 1.7 106 kg, and the air...Ch. 13 - A drinking fountain shoots water about 14 cm up in...Ch. 13 - A hurricane-force wind of 200 km/h blows across...Ch. 13 - Blood from an animal is placed in a bottle 1.30 m...Ch. 13 - Prob. 101GPCh. 13 - Prob. 102GPCh. 13 - A two-component model used to determine percent...Ch. 13 - (III) Air pressure decreases with altitude. The...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Oilver takes two identical marbles and drops the first one from a certain height. A short time later, he drops ...
College Physics
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
A series RLC circuit has R = 75 k, L = 20 mH, and resonates at 4.0 kHz. (a) Whats the capacitance? (b) Find the...
Essential University Physics (3rd Edition)
45. An FM radio station broadcasts at a frequency of 100 MHz. What inductance should be paired with a 10 pF cap...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank (Fig. P15.39). Find an expression for how far from the tank the exiting stream lands. Figure P15.39arrow_forwardA small piece of steel is tied to a block of wood. When the wood is placed in a tub of water with the steel on top, half of the block is submerged. Now the block is inverted so that the steel is under water. (i) Does the amount of the block submerged (a) increase, (b) decrease, or (c) remain the same? (ii) What happens to the water level in the tub when the block is inverted? (a) It rises. (b) It falls. (c) It remains the same.arrow_forwardAn incompressible, nonviscous fluid is initially at rest in the vertical portion of the pipe shown in Figure P15.61a, where L = 2.00 m. When the valve is opened, the fluid flows into the horizontal section of the pipe. What is the fluids speed when all the fluid is in the horizontal section as shown in Figure P15.61b? Assume the cross-sectional area of the entire pipe is constant. Figure P15.61arrow_forward
- Figure P15.47 shows a stream of water in steady flow from a kitchen faucet. At the faucet, the diameter of the stream is 0.960 cm. The stream fills a 125-cm3 container in 16.3 s. Find the diameter of the stream 13.0 cm below the opening of the faucet. Figure P15.47arrow_forwardA Hydrometer is an instrument used to determine liquid density. A simple one is sketched in Figure P9.84. The bulb of a syringe is squeezed and released to lift a sample of the liquid of interest into a tube containing a calibrated rod of known density. (Assume the rod is cylindrical.) The rod. of length L and average density 0, floats partially immersed in the liquid of density . A length h of the rod protrudes above the surface of the liquid. Show that the density of the liquid is given by =0LLh Figure P9.84arrow_forwardA 10.0-kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in water as shown in Figure P15.24b. The 12.0-cm dimension is vertical, and the top of the block is 5.00 cm below the surface of the water. (a) What are the magnitudes of the forces acting on the top and on the bottom of the block due to the surrounding water? (b) What is the reading of the spring scale? (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block.arrow_forward
- (a) How high will water rise in a glass capillary tube with a 0.500-mm radius? (b) How much gravitational potential energy does the water gain? (c) Discuss possible sources of this energy.arrow_forwardA village maintains a large tank with ail open top, containing water for emergencies. The water can drain from the tank through a hose of diameter 6.60 cm. The hose ends with a nozzle of diameter 2.20 cm. A rubber stopper is inserted into the nozzle. The water level in the lank is kept 7.50 m above the nozzle. (a) Calculate the friction force exerted on the stopper by the nozzle. (b) The stopper is removed. What mass of water flows from the nozzle in 2.00 h? (c) Calculate the gauge pressure of the flowing water in the hose just behind the nozzle.arrow_forwardFigure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forward
- A U-tube open at both ends is partially filled with water (Fig. P15.67a). Oil having a density 750 kg/m3 is then poured into the right arm and forms a column L = 5.00 cm high (Fig. P15.67b). (a) Determine the difference h in the heights of the two liquid surfaces. (b) The right arm is then shielded from any air motion while air is blown across the top of the left arm until the surfaces of the two liquids are at the same height (Fig. P15.67c). Determine the speed of the air being blown across the left arm. Take the density of air as constant at 1.20 kg/m3.arrow_forwardWater flows through a fire hose of diameter 6.35 cm at a rate of 0.0120 m3/s. The fire hose ends in a nozzle of inner diameter 2.20 cm. What is the speed with which the water exits the nozzle?arrow_forwardFigure P9.27 shows the essential parts of a hydraulic brake system. The area of the piston in the master cylinder is 1.8 cm2 and that of the piston in the brake cylinder is 6.4 cm2. The coefficient of friction between shoe and wheel drum is 0.50. If the wheel has a radius of 34 cm, determine the frictional torque about the axle when a force of 44 N is exerted on the brake pedal. Figure P9.27arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
How to Calculate Density of Liquids - With Examples; Author: cleanairfilms;https://www.youtube.com/watch?v=DVQMWihs3wQ;License: Standard YouTube License, CC-BY