Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 21P
(II) An open-tube mercury manometer is used to measure the pressure in an oxygen tank. When the atmospheric pressure is 1040 m bar, what is the absolute pressure (in Pa) in the tank if the height of the mercury in the open tube is (a) 21.0 cm higher, (b) 5.2 cm lower, than the mercury in the tube connected to the tank?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Just 5 and 6 don't mind 7
In an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?
Please solve and answer this problem correctly please. Thank you!!
Chapter 13 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 13.3 - Prob. 1AECh. 13.3 - A dam holds hack a lake that is 85 m deep at the...Ch. 13.7 - On the hydrometer of Example 1311, will the marks...Ch. 13.7 - Which of the following objects, submerged in...Ch. 13.7 - Which of the following objects, submerged in...Ch. 13.9 - As water in a level pipe passes from a narrow...Ch. 13.10 - Return to Chapter-Opening Question 2, page 339,...Ch. 13 - If one material has a higher density than another,...Ch. 13 - Airplane travelers sometimes note that their...Ch. 13 - The three containers in Fig. 1343 are filled with...
Ch. 13 - Consider what happens when you push both a pin and...Ch. 13 - A small amount of water is boiled in a 1-gallon...Ch. 13 - Prob. 6QCh. 13 - An ice cube floats in a glass of water filled to...Ch. 13 - Will an ice cube float in a glass of alcohol? Why...Ch. 13 - A submerged can of Coke will sink, but a can of...Ch. 13 - Why dont ships made of iron sink?Ch. 13 - Explain how the tube in Fig. 1344, known as a...Ch. 13 - A barge filled high with sand approaches a low...Ch. 13 - Explain why helium weather balloons, which are...Ch. 13 - A row boat floats in a swimming pool, and the...Ch. 13 - Will an empty balloon have precisely the same...Ch. 13 - Why do you float higher in salt water than in...Ch. 13 - If you dangle two pieces of paper vertically, a...Ch. 13 - Why does the stream of water from a faucet...Ch. 13 - Prob. 19QCh. 13 - A tall Styrofoam cup is filled with water. Two...Ch. 13 - Why do airplanes normally lake off into the wind?Ch. 13 - Two ships moving in parallel paths close to one...Ch. 13 - Prob. 23QCh. 13 - Prob. 24QCh. 13 - (I) The approximate volume of the granite monolith...Ch. 13 - (I) What is the approximate mass of air in a...Ch. 13 - (I) If you tried to smuggle gold bricks by filling...Ch. 13 - (I) State your mass and then estimate your volume....Ch. 13 - (II) A bottle has a mass of 35.00g when empty and...Ch. 13 - (II) If 5.0L of antifreeze solution (specific...Ch. 13 - Prob. 7PCh. 13 - (I) Estimate the pressure needed to raise a column...Ch. 13 - (I) Estimate the pressure exerted on a floor by...Ch. 13 - (I) What is the difference in blood pressure...Ch. 13 - (II) How high would the level be in an alcohol...Ch. 13 - (II) In a movie, Tarzan evades his captors by...Ch. 13 - (II) The maximum gauge pressure in a hydraulic...Ch. 13 - (II) The gauge pressure in each of the four tires...Ch. 13 - (II) (a) Determine the total force and the...Ch. 13 - (II) A house at the bottom of a hill is fed by a...Ch. 13 - (II) Water anti then oil (which dont mix) are...Ch. 13 - (II) In working out his principle, Pascal showed...Ch. 13 - (II) What is the normal pressure of the atmosphere...Ch. 13 - (II) A hydraulic press for compacting powdered...Ch. 13 - (II) An open-tube mercury manometer is used to...Ch. 13 - (III) A beaker of liquid accelerates from rest, on...Ch. 13 - (III) Water stands at a height h behind a vertical...Ch. 13 - (III) Estimate the density of the water 5.4 km...Ch. 13 - (III) A cylindrical bucket of liquid (density ) is...Ch. 13 - (I) What fraction of a piece of iron will he...Ch. 13 - (I) A geologist finds that a Moon rock whose mass...Ch. 13 - (II) A crane lifts the 16,000-kg steel hull of a...Ch. 13 - (II) A spherical balloon has a radius of 7.35 m...Ch. 13 - (II) A 74-kg person has an apparent mass of 54 kg...Ch. 13 - (II) What is the likely identity of a metal (see...Ch. 13 - (II) Calculate the true mass (in vacuum) of a...Ch. 13 - Prob. 33PCh. 13 - (II) A scuba diver and her gear displace a volume...Ch. 13 - (II) The specific gravity of ice is 0.917, whereas...Ch. 13 - (II) Archimedes principle can be used not only to...Ch. 13 - (II) (a) Show that the buoyant force FB on a...Ch. 13 - (II) A cube of side length 10.0 cm and made of...Ch. 13 - (II) How many helium-filled balloons would it take...Ch. 13 - Prob. 40PCh. 13 - (III) If an object floats in water, its density...Ch. 13 - (III) A 3.25-kg piece of wood (SG = 0.50) floats...Ch. 13 - (I) A 15-cm-radius air duct is used to replenish...Ch. 13 - Prob. 44PCh. 13 - (I) How fast does water flow from a hole at the...Ch. 13 - (II) A fish tank has dimensions 36 cm wide by 1.0...Ch. 13 - (II) What gauge pressure in the water mains is...Ch. 13 - Prob. 48PCh. 13 - (II) A 180-km/h wind blowing over the flat roof of...Ch. 13 - (II) A 6.0-cm-diameter horizontal pipe gradually...Ch. 13 - (II) Estimate the air pressure inside a category 5...Ch. 13 - (II) What is the lift (in newtons) due to...Ch. 13 - (II) Show that the power needed to drive a fluid...Ch. 13 - (II) Water at a gauge pressure of 3.8 atm at...Ch. 13 - (II) In Fig. 1355, take into account the speed of...Ch. 13 - (II) Suppose the top surface of the vessel in Fig....Ch. 13 - (II) You are watering your lawn with a hose when...Ch. 13 - (III) Suppose the opening in the tank of Fig. 1355...Ch. 13 - Prob. 59PCh. 13 - (III) (a) Show that the flow speed measured by a...Ch. 13 - Prob. 61PCh. 13 - (III) A fire hose exerts a force on the person...Ch. 13 - (II) A viscometer consists of two concentric...Ch. 13 - Prob. 64PCh. 13 - (I) Engine oil (assume SAE 10, Table 133) passes...Ch. 13 - Prob. 66PCh. 13 - (II) What diameter must a 15.5-m-long air duct...Ch. 13 - (II) What must be the pressure difference between...Ch. 13 - (II) Poiseuilles equation does not hold if the...Ch. 13 - Prob. 70PCh. 13 - (III) A patient is to be given a blood...Ch. 13 - (I) If the force F needed to move the wire in Fig....Ch. 13 - (I) Calculate the force needed to move the wire in...Ch. 13 - (II) The surface tension of a liquid can be...Ch. 13 - (III) Estimate the diameter of a steel needle that...Ch. 13 - (III) Show that inside a soap bubble, there must...Ch. 13 - (III) A common effect of surface tension is the...Ch. 13 - A 2.8-N force is applied to the plunger of a...Ch. 13 - Intravenous infusions are often made under...Ch. 13 - A beaker of water rests on an electronic balance...Ch. 13 - Estimate the difference in air pressure between...Ch. 13 - A hydraulic lift is used to jack a 920-kg car 42...Ch. 13 - When you ascend or descend a great deal when...Ch. 13 - Giraffes are a wonder of cardiovascular...Ch. 13 - Suppose a person can reduce the pressure in his...Ch. 13 - Airlines are allowed to maintain a minimum air...Ch. 13 - A simple model (Fig. 13-57) considers a continent...Ch. 13 - A ship, carrying fresh water to a desert island in...Ch. 13 - During ascent, and especially during descent,...Ch. 13 - A raft is made of 12 logs lashed together. Each is...Ch. 13 - Estimate the total mass of the Earths atmosphere,...Ch. 13 - Prob. 92GPCh. 13 - Four lawn sprinkler heads are fed by a...Ch. 13 - A bucket of water is accelerated upward at 1.8 g....Ch. 13 - The stream of water from a faucet decreases in...Ch. 13 - You need to siphon water from a clogged sink. The...Ch. 13 - An airplane has a mass of 1.7 106 kg, and the air...Ch. 13 - A drinking fountain shoots water about 14 cm up in...Ch. 13 - A hurricane-force wind of 200 km/h blows across...Ch. 13 - Blood from an animal is placed in a bottle 1.30 m...Ch. 13 - Prob. 101GPCh. 13 - Prob. 102GPCh. 13 - A two-component model used to determine percent...Ch. 13 - (III) Air pressure decreases with altitude. The...
Additional Science Textbook Solutions
Find more solutions based on key concepts
50. Write the Lewis structure for each molecule.
a.
b.
c.
d.
Introductory Chemistry (6th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forward
- You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- No chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY