
Concept explainers
Define each of the following:
a.
b. Brønsted—Lowry acid
c. Lewis acid
Which of the definitions is most general? Write reactions to justify your answer.
(a)

Interpretation: The definition of each term, Arrhenius acid, Bronsted-Lowry acid and Lewis acid is to be given. The most general definition from these terms is to be identified and the reactions are to be given for the justification of answers.
Concept introduction: An acid is a substance that turns litmus to red. It has a sour taste.
Answer to Problem 1RQ
Answer
Arrhenius acid produces hydrogen ions in aqueous solution.
Explanation of Solution
To define: Arrhenius acid.
The substance that produces hydrogen ions in aqueous solution is known as Arrhenius acid.
Arrhenius postulated the concept of acid. According to him “The substance that produces hydrogen ions in aqueous solution is known as acid.”
(b)

Interpretation: The definition of each term, Arrhenius acid, Bronsted-Lowry acid and Lewis acid is to be given. The most general definition from these terms is to be identified and the reactions are to be given for the justification of answers.
Concept introduction: An acid is a substance that turns litmus to red. It has a sour taste.
Answer to Problem 1RQ
Answer
Bronsted-Lowry acids are able to donate a proton.
Explanation of Solution
To define: Bronsted-Lowry acid.
The substance that can donate a proton
Johannes Bronsted and Thomas Lowry proposed a model known as Bronsted-Lowry model. According to this model “The donor of proton
(c)

Interpretation: The definition of each term, Arrhenius acid, Bronsted-Lowry acid and Lewis acid is to be given. The most general definition from these terms is to be identified and the reactions are to be given for the justification of answers.
Concept introduction: An acid is a substance that turns litmus to red. It has a sour taste.
Answer to Problem 1RQ
Answer
Lewis acids can accept a pair of electrons.
The most general definition of acid is given by Bronsted-Lowry model.
Explanation of Solution
To define: Lewis acid.
The chemical species that accepts a pair of non-bonding electrons is known as Lewis acid.
The Gilbert Newton Lewis suggested acid-base theory. According to this theory “The species that can accept a pair of non bonding electrons is known as acid.”
The most general definition of acid is given by Bronsted-Lowry model because this model is applicable to the non-aqueous solution also.
Arrhenius acid,
The substance that produces hydrogen ions in aqueous solution is known as Arrhenius acid.
The dissociation reaction of
The compound
Bronsted-Lowry acid,
The donor of proton
The reaction of
Lowry acid,
The chemical compound that accepts a pair of non-bonding electrons is known as Lewis acid.
The compound
Figure 1
Want to see more full solutions like this?
Chapter 13 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- Please answer the question and provide detailed explanations.arrow_forwardAll of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward5. Fill in the missing molecules in the following reaction pathway. TMSO Heat + CI then HF O₂N (1.0 equiv) AICI 3 OMearrow_forward
- e. O₂N NO2 1. excess H2, Pd/C 2. excess NaNO2, HCI 3. excess CuCNarrow_forwardHelp with a periodic table task.' Procedure Part 1: Customizing a Periodic Table Use a textbook or other valid source to determine which elements are metals, nonmetals, metalloids (called semimetals in some texts), alkali metals, alkaline earth metals, transition metals, halogens, and noble gases. Download and print a copy of the Periodic Table of Elements. Use colored pencils, colorful highlighters, or computer drawing tools to devise a schematic for designating each of the following on the periodic table: Group numbers Period number Labels for these groups: alkali metals, alkaline earth metals, transition metals, inner transition metals (lanthanides and actinides), other metals, metalloids (semimetals), other nonmetals, halogens, and noble gases Metals, nonmetals, and metalloids Note: Write the group and period numbers and color/highlight each element for categorization. Be sure to include a key for the schematic. Take a photo of the completed periodic table and upload the…arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Can you explain these two problems for mearrow_forward个 ^ Blackboard x Organic Chemistry II Lecture (m x Aktiv Learning App x → C app.aktiv.com ← Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 28 of 35 :OH H HH KO Select to Edit Arrows CH CH₂OK, CH CH2OH 5+ H :0: Donearrow_forwardCan you explain those two problems for me please.arrow_forward
- Do we need to draw the "ethyne" first for this problem? im confusedarrow_forwardCan you explain how this problem was solved.arrow_forwardQuestion 2 show work. don't Compound give Ai generated solution So (J K-1 mol-1) A 26 B 54 C 39 D 49 At 298 K, AG° is 375 kJ for the reaction 1A + 1B → 4C + 2D Calculate AH° for this reaction in kJ.arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





