Concept explainers
Define each of the following:
a.
b. Brønsted—Lowry acid
c. Lewis acid
Which of the definitions is most general? Write reactions to justify your answer.
(a)
Interpretation: The definition of each term, Arrhenius acid, Bronsted-Lowry acid and Lewis acid is to be given. The most general definition from these terms is to be identified and the reactions are to be given for the justification of answers.
Concept introduction: An acid is a substance that turns litmus to red. It has a sour taste.
Answer to Problem 1RQ
Answer
Arrhenius acid produces hydrogen ions in aqueous solution.
Explanation of Solution
To define: Arrhenius acid.
The substance that produces hydrogen ions in aqueous solution is known as Arrhenius acid.
Arrhenius postulated the concept of acid. According to him “The substance that produces hydrogen ions in aqueous solution is known as acid.”
(b)
Interpretation: The definition of each term, Arrhenius acid, Bronsted-Lowry acid and Lewis acid is to be given. The most general definition from these terms is to be identified and the reactions are to be given for the justification of answers.
Concept introduction: An acid is a substance that turns litmus to red. It has a sour taste.
Answer to Problem 1RQ
Answer
Bronsted-Lowry acids are able to donate a proton.
Explanation of Solution
To define: Bronsted-Lowry acid.
The substance that can donate a proton
Johannes Bronsted and Thomas Lowry proposed a model known as Bronsted-Lowry model. According to this model “The donor of proton
(c)
Interpretation: The definition of each term, Arrhenius acid, Bronsted-Lowry acid and Lewis acid is to be given. The most general definition from these terms is to be identified and the reactions are to be given for the justification of answers.
Concept introduction: An acid is a substance that turns litmus to red. It has a sour taste.
Answer to Problem 1RQ
Answer
Lewis acids can accept a pair of electrons.
The most general definition of acid is given by Bronsted-Lowry model.
Explanation of Solution
To define: Lewis acid.
The chemical species that accepts a pair of non-bonding electrons is known as Lewis acid.
The Gilbert Newton Lewis suggested acid-base theory. According to this theory “The species that can accept a pair of non bonding electrons is known as acid.”
The most general definition of acid is given by Bronsted-Lowry model because this model is applicable to the non-aqueous solution also.
Arrhenius acid,
The substance that produces hydrogen ions in aqueous solution is known as Arrhenius acid.
The dissociation reaction of
The compound
Bronsted-Lowry acid,
The donor of proton
The reaction of
Lowry acid,
The chemical compound that accepts a pair of non-bonding electrons is known as Lewis acid.
The compound
Figure 1
Want to see more full solutions like this?
Chapter 13 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- Calculate the total amount of heat transferred as 50 g of Water -10°C. Calculate the total amount of heat transferred as 25 g of water is heated from 50°C to 100°C as a gas. \table[[Specific heat H₂O(g), 2.00°C Η 2 g 5. Calculate the total amount of heat transferred as 50 g of wat Specific heat H₂O (g) 2.00 J/g°C -10 °C. 4.18 J/g°C 2.11 J/g°C 2260 J/g 334 J/g Specific heat H₂O (1) Specific heat H₂O (s) Heat of vaporization Heat of fusion Melting point 6. Calculate the total amount of heat transferred as 25 g of water is heated from 50 °C to 100 °C as a gas. Boiling point 100 °C 0°Carrow_forwardWrite formulas for ionic compounds composed of the following ions. Use units as a guide to your solutions. 24. sodium and nitrate 25. calcium and chlorate 26. aluminum and carbonate 27. CHALLENGE Write the formula for an ionic compound formed by ions from a group 2 element and polyatomic ions composed of only carbon and oxygen.show work step by steparrow_forwardADDITIONAL PRACTICE PRACTICE Problems Write formulas for ionic compounds composed of the following ions. Use units as a guide to your solutions. 24. sodium and nitrate 25. calcium and chlorate 26. aluminum and carbonate 27. CHALLENGE Write the formula for an ionic compound formed by ions from a group 2 element and polyatomic ions composed of only carbon and oxygen. ounds 1998arrow_forward
- 7:35 < Dji Question 19 of 22 5G 50% Submit What is the pH of a buffer made from 0.350 mol of HBrO (Ka = 2.5 × 10-9) and 0.120 mol of KBRO in 2.0 L of solution? | 1 2 3 ☑ 4 5 6 C 7 8 ☐ 9 +/- Tap here for additional resources ||| 0 ×10 Гarrow_forwardaw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. B C Br HO O Substitution will not occur at a significant rate. Explanation Check + Х Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibarrow_forwardComplete the following reactions with the necessary reagents to complete the shown transformation. Example: 1. 2. ? 3. 018 Br OH Answer: H₂O, H2SO4, HgSO4arrow_forward
- 7:34 • < Question 18 of 22 5G 50% Submit What is the pH of a buffer made from 0.220 mol of HCNO (Ka = 3.5 × 10-4) and 0.410 mol of NaCNO in 2.0 L of solution? 1 2 3 ☑ 4 5 6 C 7 8 | 9 +/- 0 ×10 Tap here for additional resources ||| Гarrow_forward6:46 ✔ 5G 58% < Question 7 of 22 Submit What is the primary species in solution at the halfway point in a titration of NH3 with HBr? A NH3 and H+ B NH₁+ and H+ C NH4+ D NH3 and NH4+ Tap here for additional resources |||arrow_forward6:49 Dji < Question 15 of 22 4G 57% Submit The pOH of a solution is 10.50. What is the OH- concentration in the solution? A 3.2 × 10-4 M B C 3.2 x 10-11 M 10.50 M D 4.2 M E 3.50 M Tap here for additional resources |||arrow_forward
- ヨ 6:49 Dji < Question 13 of 22 5G 57% Submit The pH of a solution is 2.40. What is the H+ concentration in the solution? A B 2.5 x 10-12 M 4.0 × 10-3 M C 2.40 M D 4.76 M 11.60 M Tap here for additional resources |||arrow_forwardヨ C 6:48 Di✔ < Question 12 of 22 5G 57% Submit The pH of a solution is 12.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 9.25 M 12.50 M Tap here for additional resources |||arrow_forwardヨ C 6:48 Di✔ < Question 11 of 22 5G 57% Submit The pH of a solution is 1.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 2.15 M 12.50 M Tap here for additional resources |||arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning