Concept explainers
The wood column has a thickness of 4 in. and a width of 6 in. Using the NFPA equations of Sec.13.6 and Eq.13-30, determine the maximum allowable eccentric load P that can be applied. Assume that the column is pinned at both its top and bottom.
R13−1
Answer to Problem 1RP
The maximum allowable eccentric load on the column is
Explanation of Solution
Given information:
The load applied on the wooden column is
The column is pinned at both the ends.
The width of cross-sectional area of the column is
The depth of cross-sectional area of the column is
The length of the column is
Show the expression ofNFPA Equation of Sec 13.6 as follows:
Here,
Show the expression for Equation 13-30 as follows:
Here,
Calculation:
Calculate the cross-sectional area
Substitute
Calculate the moment of inertia using the relation:
Substitute
The ends of the column are pinned. Thus, the value of
Calculate the value of
Substitute
The value of
Show the expression of NFPA Equation of Sec 13.6 as follows:
Here,
Substitute 30 for
Show the expression for Equation 13-30 as follows:
Here,
The eccentricity
Calculate the value of c using the relation:
Substitute
Substitute
Thus, the maximum allowable eccentric load on the column is
Want to see more full solutions like this?
Chapter 13 Solutions
Mechanics of Materials
Additional Engineering Textbook Solutions
Fundamentals of Heat and Mass Transfer
Fluid Mechanics: Fundamentals and Applications
Fluid Mechanics Fundamentals And Applications
Heat and Mass Transfer: Fundamentals and Applications
Vector Mechanics for Engineers: Statics
Statics and Mechanics of Materials (5th Edition)
- A W12 * 26 structural A992 steel column is pin connected at its ends and has a length L = 11.5 ft. Determine the maximum eccentric load P that can beapplied so the column does not buckle or yield. Compare this value with an axial critical load P applied through the centroid of the column.arrow_forwardSolve correctly otherwise you lost mine and your time pleasearrow_forwardThe W150x22 column is made of A-992 steel and has length L of 4.69 m. Determine the critical load if its bottom end is fixed supported and its top is free to move about the strong axis and is pinned about the weak axis. O 2216.02 kN O 86.82 kN O 708.76 kN O 176.45 kN O 986.7 kN O 347.29 kN O 1085.85 kN O 271.46 kNarrow_forward
- The aircraft link is made from an A992 steel rod. Determine the smallest diameter of the rod, to the nearest 1/16 in., that will support the load of 4 kip without buckling. The ends are pin connected.arrow_forwardProblem 13.12 2 of 4 I Review The 57-mm-diameter C86100 bronze rod is fixed supported at A and has a gap of 2 mm from the wall at B. B 1 m 2 mm Part A Determine the increase in temperature AT that will cause the rod to buckle. Assume that the contact at B acts as a pin. Use Epr = 103 GPa. Express your answer to three significant figures and include appropriate units. HA AT = Value Units Submit Request Answer Provide Feedback Next >arrow_forwardThe 10-ft-long bar is made of aluminum alloy 2014-T6. If it is fixed at its bottom and pinned at the top, determine the maximum allowable eccentric load P that can be applied using the formulas in Sec. 13.6 and Eq. 13–30.arrow_forward
- An A992 steel W200 * 46 column of length 9 m is fixed at one end and free at its other end. Determine the allowable axial load the column can support if F.S. = 2 against buckling.arrow_forward5. An A-36 (Fy= 250 MPa) steel column has a length of 5 m and is fixed at both ends. If the cross-sectional area has the dimensions shown, determine the critical load. 10 mm 1 - -10 mm 50 mm E100 mmHarrow_forwardThe rigid beam is supported by a pin at C and an A-36 steel guy wire AB. Part A If the wire has a diameter of 0.2 in., determine the distributed load w if the end B is displaced 0.25 in. downward. Express your answer to three significant figures. ΠΑΣΦΑ ↓↑ vec w = Submit Request Answer ? kip ft W 10 ft 30° Barrow_forward
- The A992 steel bar AB has a square cross section. If it is pin connected at its ends, determine the maximum allowable load P that can be applied to the frame. Use a factor of safety with respect to buckling of 2.arrow_forwardDetermine the maximum allowable intensity www of the distributed load that can be applied to member BCBCBC without causing member ABABAB to buckle. Assume that ABABAB is made of steel and is pinned at its ends for x−xx−xx-x axis buckling and fixed at its ends for y−yy−yy-y axis buckling. Use a factor of safety with respect to buckling of 2.24. EstEst = 200 GPaGPa, σYσY = 360 MPaMPa.arrow_forwardSOLVE CAREFULLY!! Please Write Clearly and Box the final Answer for Part A, with THE CORRECT UNITS! Thank you Express your answer to three significant figures and include appropriate units.arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning