
Concept explainers
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. Given two
b. The vector in the direction of u with the length of v equals the vector in the direction of v with the length of u.
c. If u ≠ 0 and u + v = 0, then u and v are parallel.
d. The lines x = 3 + t, y = 4 + 2t, z = 2 −t and x = 2t, y = 4t, z = t are parallel.
e. The lines x = 3 + t, y = 4 + 2t, z = 2 − t and the plane x + 2y + 5z = 3 are parallel.
f. There is always a plane orthogonal to both of two distinct intersecting planes.
a.

Whether the given statement is true or not and give an explanation or counterexample.
Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“Given two vectors u and v, it is always true that
Formula used:
Suppose the vectors
Vector addition is
Scalar multiplication is
Commutative property
Calculation:
Suppose
Use vector addition and scalar multiplication to compute the value of
Thus, the component of the vector,
Use vector addition and scalar multiplication to compute the value of
Thus, the component of the vector,
From the equations (1) and (2), it is observed that
Therefore, the given statement is true.
b.

Whether the given statement is true or not and give an explanation or counterexample.
Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Given:
“The vector in the direction of u with the length of v equals the vector in the direction of v with the length of u”.
Formula used:
Suppose the two vectors are u and v.
The unit vector in the direction of u with the length of v is
Calculation:
Suppose
Let x be the unit vector in the direction of u with the length of v.
Use the above mentioned formula to compute the vector x.
Thus, the vector x is
Let y be the unit vector in the direction of v with the length of u.
Use the above mentioned formula to compute the vector y.
Thus, the vector y is
From the equations (1) and (2), it is observed that both the vectors are not equal.
Therefore, the given statement is false.
c.

Whether the given statement is true or not and give an explanation or counterexample.
Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“If
Result used:
The vectors u and v are said to be parallel vectors, if one vector is the scalar multiple of the other vector.
Calculation:
Consider
This implies that the vector u is −1 times the vector v. By the result of parallel vectors, the two vectors u and v are parallel.
Therefore, the given statement is true.
d.

Whether the given statement is true or not and give an explanation or counterexample.
Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Given:
“The lines
Calculation:
Consider the parametric equation of the lines
Note that, the direction vector of a parametric line is a coefficient of t in the x, y and z direction.
The direction vectors of the above line equations are
Since the vectors
Therefore, the given statement is false.
e.

Whether the given statement is true or not and give an explanation or counterexample.
Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“The line
Result used:
“If the line and plane are parallel then the dot product of the direction vector of the line and normal to the plane is zero”.
Calculation:
Consider the line and plane equation
Note that, the direction vector of a line is the coefficient of t in the x, y and z direction.
The direction vector of the above line equation
The normal vector of the plane equation
Obtain the dot product of the vectors
By the Result, it can be conclude that, the given line and plane are parallel.
Therefore, the given statement is true.
f.

Whether the given statement is true or not and give an explanation or counterexample.
Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“There is always a plane orthogonal to both of two distinct intersecting planes.”
Definition used:
Cross product:
“Given two nonzero vectors u and v in R3, the cross product
Interpretation:
Assume that, P1 and P2 are two planes and they intersect at the lines L.
Consider the normal vectors v1 and v2 of the planes P1 and P2.
By the above definition, the direction of
That is, the vector
It is always easy to find a plane P3 which has the normal vector
The plane P3 will be orthogonal to both P1 and P2.
Therefore, the given statement is true.
Want to see more full solutions like this?
Chapter 13 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
Basic Business Statistics, Student Value Edition
Thinking Mathematically (6th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics
Pre-Algebra Student Edition
University Calculus: Early Transcendentals (4th Edition)
- 8–23. Sketching vector fields Sketch the following vector fieldsarrow_forward25-30. Normal and tangential components For the vector field F and curve C, complete the following: a. Determine the points (if any) along the curve C at which the vector field F is tangent to C. b. Determine the points (if any) along the curve C at which the vector field F is normal to C. c. Sketch C and a few representative vectors of F on C. 25. F = (2½³, 0); c = {(x, y); y − x² = 1} 26. F = x (23 - 212) ; C = {(x, y); y = x² = 1}) , 2 27. F(x, y); C = {(x, y): x² + y² = 4} 28. F = (y, x); C = {(x, y): x² + y² = 1} 29. F = (x, y); C = 30. F = (y, x); C = {(x, y): x = 1} {(x, y): x² + y² = 1}arrow_forward٣/١ B msl kd 180 Ka, Sin (1) I sin () sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 G 5005 1000 s = 1000-950 Copper bosses 5kW Rotor input 5 0.05 : loo kw 6) 1 /0001 ined sove in peaper I need a detailed solution on paper please وه اذا ميريد شرح الكتب فقط ١٥٠ DC 7) rotor a ' (y+xlny + xe*)dx + (xsiny + xlnx + dy = 0. Q1// Find the solution of: ( 357arrow_forward
- ۳/۱ R₂ = X2 2) slots per pole per phase 3/31 B. 180 msl Kas Sin (I) 1sin() sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30): 0.866 4) Rotating 5) Synchronous speeds 120×50 looo G 1000-950 1000 Copper losses 5kw Rotor input 5 loo kw 0.05 6) 1 اذا ميريد شرح الكتب فقط look 7) rotor DC ined sove in peaper I need a detailed solution on paper please 0 64 Find the general solution of the following equations: QI//y(4)-16y= 0. Find the general solution of the following equations: Q2ll yll-4y/ +13y=esinx.arrow_forwardR₂ = X2 2) slots per pole per phase = 3/31 B-180 60 msl kd Kas Sin () 2 I sin (6) sin(30) Sin (30) اذا مريد شرح الكتب بس 0 بالفراغ 3 Cos (30) 0.866 4) Rotating ined sove in peaper 5) Synchronous speed s 120×50 6 s = 1000-950 1000 Copper losses 5kw Rotor input 5 0.05 6) 1 loo kw اذا ميريد شرح الكتب فقط Look 7) rotov DC I need a detailed solution on paper please 0 64 Solve the following equations: 0 Q1// Find the solution of: ( y • with y(0) = 1. dx x²+y²arrow_forwardR₂ = X2 2) slots per pole per phase = 3/3 1 B-180-60 msl Ka Sin (1) Isin () sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 s = 1000-950 1000 Copper losses 5kw Rotor input 5 6) 1 0.05 G 50105 loo kw اذا ميريد شرح الكتب فقط look 7) rotov DC ined sove in peaper I need a detailed solution on paper please 064 2- A hot ball (D=15 cm ) is cooled by forced air T.-30°C, the rate of heat transfer from the ball is 460.86 W. Take for the air -0.025 Wim °C and Nu=144.89, find the ball surface temperature a) 300 °C 16 b) 327 °C c) 376 °C d) None か = 750 01arrow_forward
- Don't do 14. Please solve 19arrow_forwardPlease solve 14 and 15arrow_forward1. Consider the following system of equations: x13x2 + 4x3 - 5x4 = 7 -2x13x2 + x3 - 6x4 = 7 x16x213x3 - 21x4 = 28 a) Solve the system. Write your solution in parametric and vector form. b) What is a geometric description of the solution. 7 c) Is v = 7 in the span of the set S= [28. 1 HE 3 -5 3 ·6 ? If it is, write v 6 as a linear combination of the vectors in S. Justify. d) How many solutions are there to the associated homogeneous system for the system above? Justify. e) Let A be the coefficient matrix from the system above. Find the set of all solutions to Ax = 0. f) Is there a solution to Ax=b for all b in R³? Justify.arrow_forward
- 4. Suppose that A is made up of 5 column vectors in R³, and suppose that the rank(A)=3. a. How many solutions are there to Ax=0? Justify. b. What is a geometric description for the nullspace(A)? Justify. c. Do the column vectors of A span R³? Justify. d. Is A invertible? Justify.arrow_forward3. Suppose that A is 5 x 5 and rank(A)=4. Use this information to answer the following. a. Give a geometric description of nullspace(A). Justify. b. Is A invertible? Justify. c. Give a geometric description of the span of the column vectors of A. What space are the column vectors of A in? Justify. d. What is determinant of A? Justify.arrow_forward2. Consider the matrix: A || 1 1 -3 14 2 1 01 4 1 2 2 -26 1 -3 1 5] a) What is rank(A)? b) Is A invertible? Justify. c) Find the nullspace(A). Justify. d) Is the trivial solution the only solution to Ax=0? Justify. e) What is the span of the column vectors of A? Justify.arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,




