Figure 13-38 shows a spherical hollow inside a lead sphere of radius R = 4.00 cm; the surface of the hollow passes through the center of the sphere and “touches” the right side of the sphere. The mass of the sphere before hollowing was M = 2.95 kg. With what gravitational force does the hollowed-out lead sphere attract a small sphere of mass m = 0.431 kg that lies at a distance d = 9.00 cm from the center of the lead sphere, on the straight line connecting the centers of the spheres and of the hollow? Figure 13-38 Problem 13.
Figure 13-38 shows a spherical hollow inside a lead sphere of radius R = 4.00 cm; the surface of the hollow passes through the center of the sphere and “touches” the right side of the sphere. The mass of the sphere before hollowing was M = 2.95 kg. With what gravitational force does the hollowed-out lead sphere attract a small sphere of mass m = 0.431 kg that lies at a distance d = 9.00 cm from the center of the lead sphere, on the straight line connecting the centers of the spheres and of the hollow? Figure 13-38 Problem 13.
Figure 13-38 shows a spherical hollow inside a lead sphere of radius R = 4.00 cm; the surface of the hollow passes through the center of the sphere and “touches” the right side of the sphere. The mass of the sphere before hollowing was M = 2.95 kg. With what gravitational force does the hollowed-out lead sphere attract a small sphere of mass m = 0.431 kg that lies at a distance d = 9.00 cm from the center of the lead sphere, on the straight line connecting the centers of the spheres and of the hollow?
A certain brand of freezer is advertised to use 730 kW h of energy per year.
Part A
Assuming the freezer operates for 5 hours each day, how much power does it require while operating?
Express your answer in watts.
ΜΕ ΑΣΦ
?
P
Submit
Request Answer
Part B
W
If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum
performance coefficient?
Enter your answer numerically.
K =
ΜΕ ΑΣΦ
Submit
Request Answer
Part C
What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C?
Express your answer in kilograms.
m =
Ο ΑΣΦ
kg
Describe the development of rational choice theory in sociology.
Please include
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.