Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 13.9P
To determine
The Rankine active force
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
13.22 Consider the retaining wall shown in Figure 13.38. The height of the wall is 9.75m. and the unit weight of the sand backfill is 18.7kN/m3. Using Coulomb's equation, calculate the active force, Pa, on the wall for the following values of the angle of wall friction. Also, comment on the direction and location of the resultant.
Please answer 13.13
The retaining wall shown above is subjected to an active earth pressure distribution as illustrsted in the figure. What is the eccentricity of the resultant load acting on this wall (measured from the centre of the wall)?
XX
w=240 kN/m
5m
length
W
2m
35 kPa
O 0.31 m
O 0.61 m
O 0.23 m
O 0.41 m
Chapter 13 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
Ch. 13 - Prob. 13.1PCh. 13 - Prob. 13.2PCh. 13 - Prob. 13.3PCh. 13 - Prob. 13.4PCh. 13 - Prob. 13.5PCh. 13 - Prob. 13.6PCh. 13 - Prob. 13.7PCh. 13 - Prob. 13.8PCh. 13 - Prob. 13.9PCh. 13 - Prob. 13.10P
Ch. 13 - Prob. 13.11PCh. 13 - Prob. 13.12PCh. 13 - Prob. 13.13PCh. 13 - Prob. 13.14PCh. 13 - Prob. 13.15PCh. 13 - Prob. 13.16PCh. 13 - Prob. 13.17PCh. 13 - Prob. 13.18PCh. 13 - Prob. 13.19PCh. 13 - Prob. 13.20PCh. 13 - Prob. 13.21PCh. 13 - Prob. 13.22PCh. 13 - Prob. 13.23PCh. 13 - Prob. 13.24PCh. 13 - Prob. 13.25PCh. 13 - Prob. 13.26PCh. 13 - Prob. 13.27PCh. 13 - Prob. 13.1CTP
Knowledge Booster
Similar questions
- For the frictionless wall shown in Figure No 1, Calculate the following: (a) The active lateral earth pressure distribution with depth. (b) The passive lateral earth pressure distribution with depth(c) The magnitudes and locations of the active and passive forces. (d) The resultant force and its location. (e) The ratio of passive moment to active moment. Note: UDL should be considered as mentioned in the figurearrow_forwardWhere, X=36 A retaining wall (frictionless) is shown in a) Plot the variation of active and passive lateral pressures with depth for soil profile shown in Fig.1 b) Determine the force due to surcharge in active side c) Compute Total active force on the wall if the wall is 9m long d) Evaluate the lateral stability of the wall by comparing the forces acting on the wallarrow_forward13.2 Assume that the retaining wall shown in Figure 13.9 is frictionless. Determine the Rankine active force per unit length of the wall, the variation of active earth pressure with depth, and the location of the resultant. If H = 4m, Ø = 36° and y = 18 kN/m3 kN Ans. P, = 37.44", z = 1.33m m 13.3 Assume that the retaining wall shown in Figure 13.9 is frictionless. Determine the Rankine passive force per unit length of the wall, the variation of lateral earth pressure with depth, and the location of the resultant. If H = 5m, Ø = 35° and y = 14 kN/m? Ans. Pp 645.8 kN z = 1.67m m. Sand Unit weight = y (or density = p) %3D H c' = 0 8' (angle of wall friction) = 0 Figure 13.9arrow_forward
- A retaining wall supports a horizontal backfill that is composed of two types of soil. The first layer is 4.79 meters high. It has a unit weight of 16.61 kN/m3. The second layer is 6.58 meters and has a unit weight of 18.72 kN/m3. If the angle of friction for both layers is 34°, determine the total active force (kN) acting on the retaining wall per unit width. Final answer should be in two decimal places.arrow_forwardActive earth pressure per meter length on the retaining wall with a smooth vertical back as shown in the figure will be SAND 3 Y 2t/m O= 30° H= 9 marrow_forward3. Calculate and draw to scale the earth pressures along the back of the retaining wall in the Figure 1. Then calculate the over-turning moment around point o . p = 1800 kg/m3 C = 0 kPa 1.5m P = 22 p = 1600 kg/m³ c =15 kPa O = 18 1.5m 0.5m Point O 0.5m 1m Figure 1arrow_forward
- Prob. 4 13.17 Figure 13.10 shows a frictionless wall with a sloping granular backfill. Given: H = 4 m, a = 10°, ø' = 33°, and y = 19 kN/m³. a. Determine the magnitude of active pressure, o, at the bottom of the wall. Also, state the direction of application of o. b. Determine the Rankine active force, Pas per unit length of the wall and its location and direction. H oa Frictionless wall Figure 13.10 Frictionless vertical retaining wall with sloping backfill © Cengage Learningarrow_forward1. Refer to Figure below For H = 6 m, y = 17.0 kN/m³, o' = 36°, c' = 0, ß = 85°, a = 10°, and 8' = 24°, assume that the backfill is in the active state and use Coulomb’s equation to determine the magnitude, location, and direction Pa of the active thrust on the wall. H 2. what would be the active thrust Pa there is a surcharge of 25 kN/m² at the ground level? whenarrow_forwardDetermine the lateral earth pressure force on the wall (6.0 m height shown in the figure. Draw the stress distribution and locate the location of the resultant force. Sandy soil kN Ye = 20 O = 36.0°arrow_forward
- Please answer 13.16arrow_forwardSomeone can help me with this one pleasearrow_forwardDetermine the active lateral earth pressure on the frictionless wall shown in the figure below. Sketch the lateral earth pressure distributions and calculate the resultant force and its location from the base of the wall. Also, determine the moments of passive and active forces. Neglect seepage effects. Use Rankine's earth pressure method. (w = 10 kN/m) 3.0m Ysat 20 kN/m³ y = 19 kN/m²³ ' = 30° Ysat = 20 kN/m³ y = 18 kN/m³ o = 28 6.0marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning