
Find the Rankine active force

Answer to Problem 13.19P
The Rankine active force
The location
Explanation of Solution
Given information:
The height (H) of the retaining wall is 12 m.
The depth
The unit weight
The sand friction angle
The cohesion
The surcharge pressure (q) is
The depth
The saturated unit weight
The saturated sand friction angle
The cohesion
Calculation:
For sand:
Determine the active earth pressure coefficient
Substitute
For saturated sand:
Determine the active earth pressure coefficient
Substitute
Determine the total stress
Substitute
Determine the pore water pressure at 0 m depth using the relation.
Here,
Take the unit weight of the water as
Substitute
Determine the effective active earth pressure
Substitute
Determine the total stress (sand)
Substitute
Determine the total stress (saturated sand)
Substitute
Determine the pore water pressure at 3.0 m depth using the relation.
Substitute
Determine the effective active earth pressure (sand)
Substitute
Determine the effective active earth pressure (saturated sand)
Substitute
Determine the total stress
Substitute
Determine the pore water pressure at 8 m depth using the relation.
Substitute
Determine the effective active earth pressure
Substitute
Show the variation of effective active earth pressure and pore water pressure for the respective depth as in Figure 1.
Refer Figure 1.
Determine the active earth pressure per unit length for area 1 using the relation.
Here, b is the width and h is the depth.
Substitute
Determine the active earth pressure per unit length for area 2 using the relation.
Substitute
Determine the active earth pressure per unit length for area 3 using the relation.
Substitute 8.0 m for b and
Determine the active earth pressure per unit length for area 4 using the relation.
Substitute 8.0 m for b and
Determine the active earth pressure per unit length for area 5 using the relation.
Substitute 8.0 m for b and
Determine the Rankine active force
Substitute
Thus, the Rankine active force
Determine the location
Substitute
Thus, the location of the resultant force is
Want to see more full solutions like this?
Chapter 13 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
- I need help solving this question, I don't know how to approach itarrow_forwardI do not know how to approach this problemarrow_forwardConsider a pool of saturated water at atmospheric pressure. The base of the pool is made of thick polished copper square plate of length 1 m. To generate steam, exhaust gas is flowing underneath and parallel to the base plate with velocity 3 m/s and average temperate of 1090°C. The bottom surface the plate is at constant temperature of 110°. Use the properties of air for exhaust gas. a) Determine the boiling heat transfer rate. b) Determine the temperature of the top surface of the plate. Comment on the results. c) Examine the impact of your assumptions on your solutions. (what will change if any of the assumptions is not valid?)arrow_forward
- -The axial deflection pipe in inches. -The lateral deflection of the beam in inches -The total deflection of the beam like structure in inches ? all to 4 sig figs AI did not help. as i input what i get im not sure if its a rounding error or what.arrow_forward1. For the foundation shown below: Qapp = 60 kips (Load obtained from structural engineer) 1.5 ft G.W.T. 3 ft Poorly Graded Sand (SP): Ym 115 pcf (above G.W.T.) Ysat 125 pcf (below G.W.T.) c' = 0, ' = 35° K Square footing, 4' x 4' Foundation Dimension Information: 1-ft x 1-ft square concrete column. 1-ft thick "foot" flanges. Yconc=150 pcf *Assume weight of reinforcing steel included in unit weight of concrete. *Assume compacted backfill weighs the same as in-situ soil. Assume this foundation is being designed for a warehouse that had a thorough preliminary soil exploration. Using the general bearing capacity equation: a. Calculate the gross applied bearing pressure, the gross ultimate bearing pressure, and determine if the foundation system is safe using a gross bearing capacity ASD approach. Please include the weight of the foundation, the weight of the backfill soil, and the effect of the uplift pressure caused by the presence of the water table in your bearing capacity…arrow_forward٢٥ ٠٥:٤٠١٠ 2025 ChatGPT VivaCut Onet Puzzle مسلم X Excel JPG I❤> PDF Copilot Chat Bot PDF2IMG iLovePDF NokoPrint O.O StudyX ☑ W CapCut Candy Crush DeepSeek Word ☐ Saga 啡 AcadAl ل TikTokarrow_forward
- Refer to the figure below. Given: L = 7 m, y = 16.7 kN/m², and ø' = 30°. L L3 ση Sand γ $' D T LA L σε σε IN P Sand 1. Calculate the theoretical depth of penetration, D. (Enter your answer to three significant figures.) D= m 2. Calculate the maximum moment. (Enter your answer to three significant figures.) Mmax kN-m/marrow_forwardWhy is it important for construction project managers to be flexible when dealing with the many variable factors that pop up in a project?arrow_forwardWhat are some reasons for why a company would accelerate a construction project?arrow_forward
- For the design of a shallow foundation, given the following: Soil: ' = 20° c' = 52 kN/m² Unit weight, y = 15 kN/m³ Modulus of elasticity, E, = 1400 kN/m² Poisson's ratio, μs = 0.35 Foundation: L=2m B=1m Df = 1 m Calculate the ultimate bearing capacity. Use the equation: 1 - qu = c' NcFcs Fcd Fcc +qNqFqsFqdFqc + ½√BN√Fãs F√dƑxc 2 For '=20°, Nc = 14.83, N₁ = 6.4, and N₁ = 5.39. (Enter your answer to three significant figures.) qu = kN/m²arrow_forwardA 2.0 m wide strip foundation carries a wall load of 350 kN/m in a clayey soil where y = 15 kN/m³, c' = 5.0 kN/m² and ' = 23°. The foundation depth is 1.5 m. For ' = 23°: Nc = 18.05; N₁ = 8.66; Ny = = = 8.20. Determine the factor of safety using the equation below. qu= c' NcFcs FcdFci+qNqFqsFq 1 F + gd. 'qi 2 ·BN√· FF γί Ysyd F (Enter your answer to three significant figures.) FS =arrow_forward2P -1.8 m- -1.8 m- -B Wo P -1.8 m- Carrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning



