![INTRODUCTORY CHEMISTRY-W/SEL.SOLN.MAN.](https://www.bartleby.com/isbn_cover_images/9780134845609/9780134845609_largeCoverImage.gif)
Concept explainers
Data Interpretation and Analysis
Read CHEMISTRY IN THE ENVIRONMENT: Water Pollution and the Flint River Water Crisis at the end of Section 12.8. The table shown here features a set of data on lead levels in drinking water in Flint, Michigan, collected by the Virginia Tech team described in the box. The lead levels in water are expressed in units of parts per billion (ppb), which is a way of reporting solution concentration that is similar to mass percent. Mass percent is the number of grams of solute per 100 grams solution, while ppb is the number of grams of solute per
Sample # | Lead level first draw (ppb) | Lead level 45-sec flush (ppb) | Lead level 2-min flush (ppb) |
1 | 0.344 | 0.266 | 0.145 |
2 | 8.133 | 10.77 | 2.761 |
3 | 1.111 | 0.11 | 0.123 |
4 | 8.007 | 7.446 | 3.384 |
5 | 1.951 | 0.048 | 0.035 |
6 | 7.2 | 1.4 | 0.2 |
7 | 40.63 | 9.726 | 6.132 |
8 | 1.1 | 2.5 | 0.1 |
9 | 10.6 | 1.038 | 1.294 |
10 | 6.2 | 4.2 | 2.3 |
11 | 4.358 | 0.822 | 0.147 |
12 | 24.37 | 8.796 | 4.347 |
13 | 6.609 | 5.72 | 1.433 |
14 | 4.062 | 1.099 | 1.085 |
15 | 29.59 | 3.258 | 1.843 |
Lead Levels in Flint Tap Water
Source: FlintWaterStuo‘y org (2015) JLead Results from Tap Water Sampling in Flint, MI during the Flint Water Crisis"
(a) Determine the average value of lead for first draw, 45-second flush, and 2-minute flush (round to three significant figures). (b) Do the data support the idea that running the tap water before taking a sample made the lead levels in the water appear lower? Why might this be the case?
(c) The EPA requires water providers to monitor drinking water at customer taps. If lead concentrations exceed 15 ppb in 10% or more of the taps sampled, the water provider must notify the customer and take steps to control the corrosiveness of the water. If the water provider in Flint had used first-draw samples to monitor lead levels, would it have been required to take action by EPA requirements? If the Flint water provider used 2-minute flush samples, would it have had to take action? Which drawing technique do you think more closely mimics the way residents actually use their water? (d) Using the highest value of lead from the first-draw data set, and assuming a resident drinks 2 L of water per day, calculate the mass of lead that the resident would consume over the course of 1 year. (Assume the water has a density of 1-0 g/mL.)
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
![Blurred answer](/static/blurred-answer.jpg)
Chapter 13 Solutions
INTRODUCTORY CHEMISTRY-W/SEL.SOLN.MAN.
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Biology (11th Edition)
Anatomy & Physiology (6th Edition)
- Q1: For each molecule, assign each stereocenter as R or S. Circle the meso compounds. Label each compound as chiral or achiral. OH HO CI Br H CI CI Br CI CI Xf x f g Br D OH Br Br H₂N R. IN Ill I -N S OMe D II H CO₂H 1/111 DuckDuckGarrow_forwardThese are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. If a racemic molecule is made along the way, you need to draw both enantiomers and label the mixture as "racemic". All of the carbon atoms of the products must come from the starting material! ? H Harrow_forwardQ5: Draw every stereoisomer for 1-bromo-2-chloro-1,2-difluorocyclopentane. Clearly show stereochemistry by drawing the wedge-and-dashed bonds. Describe the relationship between each pair of the stereoisomers you have drawn.arrow_forward
- Classify each pair of molecules according to whether or not they can participate in hydrogen bonding with one another. Participate in hydrogen bonding CH3COCH3 and CH3COCH2CH3 H2O and (CH3CH2)2CO CH3COCH3 and CH₂ CHO Answer Bank Do not participate in hydrogen bonding CH3CH2OH and HCHO CH3COCH2CH3 and CH3OHarrow_forwardNonearrow_forwardQ4: Comparing (3S,4S)-3,4-dimethylhexane and (3R,4S)-3,4-dimethylhexane, which one is optically active? Briefly explain.arrow_forward
- Nonearrow_forwardNonearrow_forwardGiven the standard enthalpies of formation for the following substances, determine the reaction enthalpy for the following reaction. 4A (g) + 2B (g) → 2C (g) + 7D (g) AHrxn =?kJ Substance AH in kJ/mol A (g) - 20.42 B (g) + 32.18 C (g) - 72.51 D (g) - 17.87arrow_forward
- Determine ASran for Zn(s) + 2HCl(aq) = ZnCl2(aq) + H2(aq) given the following information: Standard Entropy Values of Various Substance Substance So (J/mol • K) 60.9 Zn(s) HCl(aq) 56.5 130.58 H2(g) Zn2+(aq) -106.5 55.10 CI (aq)arrow_forward3) Catalytic hydrogenation of the compound below produced the expected product. However, a byproduct with molecular formula C10H12O is also formed in small quantities. What is the by product?arrow_forwardWhat is the ΔHorxn of the reaction? NaOH(aq) + HCl(aq) → H2O(l) + NaCl(aq) ΔHorxn 1= ________ kJ/molarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)