Concept explainers
Ganymede is the largest of Jupiter’s moons. Consider a rocket on the surface of Ganymede, at the point farthest from the planet (Fig. P13.23). Model the rocket as a particle. (a) Does the presence of Ganymede make Jupiter exert a larger, smaller, or same size force on the rocket compared with the force it would exert if Ganymede were not interposed? (b) Determine the escape speed for the rocket from the planet–satellite system. The radius of Ganymede is 2.64 × 106 m, and its mass is 1.495 × 1023 kg. The distance between Jupiter and Ganymede is 1.071 × 109 m, and the mass of Jupiter is 1.90 × 1027 kg. Ignore the motion of Jupiter and Ganymede as they revolve about their center of mass.
Figure P13.23
Trending nowThis is a popular solution!
Chapter 13 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Additional Science Textbook Solutions
University Physics (14th Edition)
Essential University Physics: Volume 1 (3rd Edition)
Glencoe Physics: Principles and Problems, Student Edition
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
University Physics Volume 3
Essential University Physics: Volume 2 (3rd Edition)
- Consider a planet that has two layers. There is a core, which has density 9.9 x 103 kg/m3 and radius 3.9 x 106 m, and then there is a crust, which has density 4.9 x 103 kg/m3 and sits on top of the core. The planet has a total radius of 16.9 x 106 m. Calculate the acceleration due to gravity at the surface of this planet, in N/kg. Use G = 6.7 x 10-11 N m2/ kg2. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardTitan has a radius of 2500.0 km and a mass of 1.1 × 1023 kg. What is the escape velocity in km/s from Titan's exosphere, which begins at about 1400 km above the surface? The gravitational constant is G = 6.67 × 10-11 m3 kg-1 s-2.arrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed ?escvesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ?=4.10×106 g/m3ρ=4.10×106 g/m3 and volume ?=1.25×1012 m3V=1.25×1012 m3 . Recall that the universal gravitational constant is ?=6.67×10−11 N·m2/kg2G=6.67×10−11 N·m2/kg2 .arrow_forward
- What is the escape velocity in km/s from Jupiter's exosphere, which begins about 995 km above the surface? Assume the Gravitational constant is G = 6.67 × 10-11 m3 kg-1 s-2 , and that Jupiter has a mass of 2.2e+27 kg and a radius of 71.0 × 103 km.arrow_forwardEarth’s escape velocity is 11 km/s at its surface. An unknown planet has a mass that is 100 times Earth’s mass and a radius that is 4 times Earth’s radius. Calculate the escape velocity at the surface of an unknown planet.arrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. Assume that the asteroid is approximately spherical, with an average density p = 3.06 × 106 g/m³ and volume V = 1.25 × 10¹² m³. Recall that the universal gravitational constant is G = 6.67 × 10¯¹¹ N·m²/kg². With what minimum initial speed Vese will the rocks need to be thrown in order for them never to fall back to the asteroid? Vesc = m/sarrow_forward
- The average density of the planet Uranus is 1.27 x 103 kg/m3. The ratio of the mass of Neptune to that of Uranus is 1.19. The ratio of the radius of Neptune to that of Uranus is 0.969. Find the average density of Neptune.arrow_forwardThe average density of the planet Uranus is 1.27 103 kg/m3. The ratio of the mass of Neptune to that of Uranus is 1.19. The ratio of the radius of Neptune to that of Uranus is 0.969. Find the average density of Neptune.arrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ? = 2.67 × 106 g/m3 and volume V =1.71 × 1012 m3. Recall that the universal gravitational constant is G = 6.67 × 10-11 (Nm2)/(kg2).arrow_forward
- Venus is known as the 'Earth's sister' because of its similar size and gravity. It has a mass of 4.87 x 10^24 kg and an average radius of 6060 km. As the 150 kg satellite slowly approaches the surface of Venus it is influenced by its gravitational field. (a) Describe how the satellite gravitational potential energy changes as it is moving from an altitude of 5000 km to the surface of Venus. (b) Calculate the gravitational fieid strength on the surface of Venus.arrow_forwardC) ESA wants to send a satellite to Jupiter to investigate its internal structure and origin by measuring the atmospheric composition and temperature. The spacecraft will leave Earth from a parking orbit of radius 6578 km and arrive at Jupiter in a parking orbit of radius 75782 km. What is the total velocity change required to do this mission? How long would it take for the satellite to arrive at Jupiter?arrow_forwardKepler-10c is another exoplanet orbiting another star. It has a mass that is approximately 17.0 times the mass of the Earth. It has a radius that is approximately 2.4 times the that of the Earth. Stats for the Earth (Given): MEarth = 6×1024[kg]. REarth = 6.4×106[m]. Question: What is the escape velocity of an object sitting on the surface of Kepler-10c ? Round to the nearest [km/s] 30 [km/s] 24 [km/s] 20 [km/s] 18 [km/s] 16 [km/s] 14 [km/s] 11 [km/s] None of the answers is even close to correctarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University