EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100581557
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 13.11P
To determine
The acceleration of the meteoroid due to the Earth’s gravitation.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
When a falling meteoroid is at a distance above the Earth's surface of 3.10 times the Earth's radius, what is its acceleration due to the Earth's gravitation?
When a falling meteoroid is at a distance above the Earth's surface of 3.30 times the Earth's radius, what is its acceleration (m/s2 towards earth) due to the Earth's gravitation?
So let's consider a person with a mass of 51.0 kg standing on the Earth. To find the gravitational force on the person, we'll again use Newton's law of universal gravitation with the Earth as
m2
and the radius of the Earth for the distance
F =
GmME
RE2
.
Now all we need to do is substitute values and calculate. We already said
m = 51.0 kg,
and we know
G = 6.67 ✕ 10−11 N · m2/kg2.
The Earth is not a perfect sphere, but, its average radius is
RE = 6.37 ✕ 106 m.
The mass of the Earth is
ME = 5.97 ✕ 10−24 kg.
We can then substitute these values in the following formula. (Enter your answer in N.)
F =
(6.67 ✕ 10−11 N · m2/kg2)(51.0 kg)(5.97 ✕ 1024 kg)
(6.37 ✕ 106 m)2
(A) = _______ N
Now let's compare this result to the person's weight (in N) found by multiplying the person's mass by g (or, that is,
w = mg)
where
g = 9.80 m/s2.
w = (51.0 kg)(9.80 m/s2) =(b) __________________ N
You should have found that these two methods give about the same result!…
Chapter 13 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 13 - A planet has two moons of equal mass. Moon 1 is in...Ch. 13 - Superman stands on top of a very tall mountain and...Ch. 13 - An asteroid is in a highly eccentric elliptical...Ch. 13 - Prob. 13.4QQCh. 13 - A system consists of five particles. How many...Ch. 13 - Rank the following quantities of energy from...Ch. 13 - Prob. 13.3OQCh. 13 - Suppose the gravitational acceleration at the...Ch. 13 - Imagine that nitrogen and other atmospheric gases...Ch. 13 - An object of mass m is located on the surface of a...
Ch. 13 - Prob. 13.7OQCh. 13 - The vernal equinox and the autumnal equinox are...Ch. 13 - Rank the magnitudes of the following gravitational...Ch. 13 - The gravitational force exerted on an astronaut on...Ch. 13 - Prob. 13.11OQCh. 13 - Each Voyager spacecraft was accelerated toward...Ch. 13 - In his 1798 experiment, Cavendish was said to have...Ch. 13 - Prob. 13.3CQCh. 13 - Prob. 13.4CQCh. 13 - Prob. 13.5CQCh. 13 - Prob. 13.6CQCh. 13 - Prob. 13.7CQCh. 13 - Prob. 13.8CQCh. 13 - A satellite in low-Earth orbit is not truly...Ch. 13 - In introductory physics laboratories, a typical...Ch. 13 - Determine the order of magnitude of the...Ch. 13 - A 200-kg object and a 500-kg object are separated...Ch. 13 - During a solar eclipse, the Moon, the Earth, and...Ch. 13 - Two ocean liners, each with a mass of 40 000...Ch. 13 - Three uniform spheres of masses m1 = 2.00 kg, m2 =...Ch. 13 - Two identical isolated particles, each of mass...Ch. 13 - Prob. 13.8PCh. 13 - Two objects attract each other with a...Ch. 13 - Review. A student proposes to study the...Ch. 13 - Prob. 13.11PCh. 13 - Prob. 13.12PCh. 13 - Review. Miranda, a satellite of Uranus, is shown...Ch. 13 - (a) Compute the vector gravitational field at a...Ch. 13 - Three objects of equal mass are located at three...Ch. 13 - A spacecraft in the shape of a long cylinder has a...Ch. 13 - An artificial satellite circles the Earth in a...Ch. 13 - Io, a satellite of Jupiter, has an orbital period...Ch. 13 - A minimum-energy transfer orbit to an outer planet...Ch. 13 - A particle of mass m moves along a straight line...Ch. 13 - Plasketts binary system consists of two starts...Ch. 13 - Two planets X and Y travel counterclockwise in...Ch. 13 - Comet Halley (Fig. P13.23) approaches the Sun to...Ch. 13 - Prob. 13.24PCh. 13 - Use Keplers third law to determine how many days...Ch. 13 - Neutron stars are extremely dense objects formed...Ch. 13 - A synchronous satellite, which always remains...Ch. 13 - (a) Given that the period of the Moons orbit about...Ch. 13 - Suppose the Suns gravity were switched off. The...Ch. 13 - A satellite in Earth orbit has a mass of 100 kg...Ch. 13 - How much work is done by the Moons gravitational...Ch. 13 - How much energy is required to move a 1 000-kg...Ch. 13 - Prob. 13.33PCh. 13 - An object is released from rest at an altitude h...Ch. 13 - A system consists of three particles, each of mass...Ch. 13 - Prob. 13.36PCh. 13 - A 500-kg satellite is in a circular orbit at an...Ch. 13 - Prob. 13.38PCh. 13 - Prob. 13.39PCh. 13 - Prob. 13.40PCh. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Prob. 13.43PCh. 13 - Prob. 13.44PCh. 13 - Prob. 13.45PCh. 13 - Prob. 13.46PCh. 13 - Ganymede is the largest of Jupiters moons....Ch. 13 - Prob. 13.48PCh. 13 - At the Earths surface, a projectile is launched...Ch. 13 - Prob. 13.50APCh. 13 - Prob. 13.51APCh. 13 - Voyager 1 and Voyager 2 surveyed the surface of...Ch. 13 - A satellite is in a circular orbit around the...Ch. 13 - Why is the following situation impossible? A...Ch. 13 - Let gM represent the difference in the...Ch. 13 - Prob. 13.56APCh. 13 - Prob. 13.57APCh. 13 - Prob. 13.58APCh. 13 - Prob. 13.59APCh. 13 - Two spheres having masses M and 2M and radii R and...Ch. 13 - Two hypothetical planets of masses m1 and m2 and...Ch. 13 - (a) Show that the rate of change of the free-fall...Ch. 13 - A ring of matter is a familiar structure in...Ch. 13 - Prob. 13.64APCh. 13 - Review. As an astronaut, you observe a small...Ch. 13 - Prob. 13.66APCh. 13 - Studies of the relationship of the Sun to our...Ch. 13 - Review. Two identical hard spheres, each of mass m...Ch. 13 - Prob. 13.69APCh. 13 - Prob. 13.70APCh. 13 - Prob. 13.71APCh. 13 - Prob. 13.72APCh. 13 - Prob. 13.73APCh. 13 - Two stars of masses M and m, separated by a...Ch. 13 - Two identical particles, each of mass 1 000 kg,...Ch. 13 - Prob. 13.76APCh. 13 - As thermonuclear fusion proceeds in its core, the...Ch. 13 - The Solar and Heliospheric Observatory (SOHO)...Ch. 13 - The oldest artificial satellite still in orbit is...Ch. 13 - Prob. 13.80CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forward
- If a planet with 1.5 times the mass of Earth was traveling in Earth’s orbit, what would its period be?arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardShow that for eccentricity equal to one in Equation 13.10 for conic sections, the path is a parabola. Do this by substituting Cartersian coordinates, x and y, for the polar coordinates, r and , and showing that it has the general form for a parabola, x=ay2+by+c .arrow_forward
- Two double stars, one having mass 1.0 Msun and the other 3.0 Msun, rotate about their common center of mass. Their separation is 6 light years. What is their period of revolution?arrow_forwardModel the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardWhen Sedna was discovered in 2003, it was the most distant object known to orbit the Sun. Currently, it is moving toward the inner solar system. Its period is 10,500 years. Its perihelion distance is 75 AU. a. What is its semimajor axis in astronomical units? b. What is its aphelion distance?arrow_forward
- The astronaut orbiting the Earth in Figure P3.27 is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 600 km above the Earth’s surface, where the free-fall acceleration is 8.21 m/s2. Take the radius of the Earth as 6 400 km. Determine the speed of the satellite and the time interval required to complete one orbit around the Earth, which is the period of the satellite. Figure P3.27arrow_forwardIf a spacecraft is headed for the outer solar system, it may require several gravitational slingshots with planets in the inner solar system. If a spacecraft undergoes a head-on slingshot with Venus as in Example 11.6, find the spacecrafts change in speed vS. Hint: Venuss orbital period is 1.94 107 s, and its average distance from the Sun is 1.08 1011 m.arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning