OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
11th Edition
ISBN: 9781305864900
Author: Darrell Ebbing; Steven D. Gammon
Publisher: Cengage Learning US
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.146QP

(a)

Interpretation Introduction

Interpretation:

The rate constant, half life and the concentration of [A] have to be calculated.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time.  The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

Integrated rate law for second order reactions:

Taking in the example of following reaction,

aAproducts

And the reaction follows second order rate law,

Then the relationship between the concentration of A and time can be mathematically expressed as,

1[A]t=kt+1[A]0

The above expression is called as integrated rate for second order reactions.

Half life for second order reactions:

In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).

The half-life of second order reaction can be calculated using the equation,

t1/2=1(k[A]0)

Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.

To calculate the rate constant of the reaction

(a)

Expert Solution
Check Mark

Answer to Problem 13.146QP

Answer

The rate constant of the reaction is 2.8×10-2L/(mol.s) .

Explanation of Solution

The plot of 1[A] (vs) time gives a straight line and the reaction is said to be second order. In this case, the value of the slope is 2.8×10-2L/(mol.s) that is said to be same as the rate constant of the reaction. Hence, the rate constant of the reaction is 2.8×10-2L/(mol.s) .

(b)

Interpretation Introduction

Interpretation:

The rate constant, half life and the concentration of [A] have to be calculated.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time.  The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

Integrated rate law for second order reactions:

Taking in the example of following reaction,

aAproducts

And the reaction follows second order rate law,

Then the relationship between the concentration of A and time can be mathematically expressed as,

1[A]t=kt+1[A]0

The above expression is called as integrated rate for second order reactions.

Half life for second order reactions:

In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).

The half-life of second order reaction can be calculated using the equation,

t1/2=1(k[A]0)

Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.

To calculate the half life of the reaction

(b)

Expert Solution
Check Mark

Answer to Problem 13.146QP

Answer

The half period of the reaction is 1.9×105s .

Explanation of Solution

Initial concentration = 1.9×10-4M

Rate constant= 2.8×10-2L/(mol.s)

The half-life of second order reaction can be calculated using the equation,

t1/2=1(k[A]0)

t1/2=1(2.8×10-2L(mol.s)×1.9×10-4M)t1/2=1.88×105=1.9×105s

The half period of the reaction = 1.9×105s .

(c)

Interpretation Introduction

Interpretation:

The rate constant, half life and the concentration of [A] have to be calculated.

Concept Introduction:

The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time.  The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.

The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of mol/(L.s) .

Integrated rate law for second order reactions:

Taking in the example of following reaction,

aAproducts

And the reaction follows second order rate law,

Then the relationship between the concentration of A and time can be mathematically expressed as,

1[A]t=kt+1[A]0

The above expression is called as integrated rate for second order reactions.

Half life for second order reactions:

In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).

The half-life of second order reaction can be calculated using the equation,

t1/2=1(k[A]0)

Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.

To calculate the concentration of [A] after 275 seconds

(c)

Expert Solution
Check Mark

Answer to Problem 13.146QP

Answer

The concentration of [A] is 2.1×10-3M .

Explanation of Solution

The equation for second order reaction is given as,

1[A]t=kt+1[A]0

Initial concentration = 2.1×10-2M

Rate constant= 2.8×10-2L/(mol.s)

The concentration of [A] after 275 seconds =

1[A]t=2.8×10-2L/(mol.s)×275s+12.1×10-3mol/L1[A]t=7.70L/mol+476.2L/mol=483.9L/mol1[A]t=1483.9L/mol1[A]t=2.06×10-32.1×10-3M

The concentration of [A] = 2.1×10-3M .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Strain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Next
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT

Chapter 13 Solutions

OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)

Ch. 13.5 - Consider the following potential-energy curves for...Ch. 13.6 - Acetaldehyde, CH3CHO, decomposes when heated....Ch. 13.7 - Prob. 13.8ECh. 13.7 - Prob. 13.9ECh. 13.7 - Prob. 13.10ECh. 13.8 - The iodide-ion-catalyzed decomposition of hydrogen...Ch. 13.8 - Prob. 13.12ECh. 13.8 - Prob. 13.6CCCh. 13 - List the four variables or factors that can affect...Ch. 13 - Define the rate of reaction of HBr in the...Ch. 13 - Give at least two physical properties that might...Ch. 13 - A rate of reaction depends on four variables...Ch. 13 - Prob. 13.5QPCh. 13 - The reaction...Ch. 13 - The rate of a reaction is quadrupled when the...Ch. 13 - Prob. 13.8QPCh. 13 - The reaction A(g)B(g)+C(g) is known to be first...Ch. 13 - Prob. 13.10QPCh. 13 - Prob. 13.11QPCh. 13 - Sketch a potential-energy diagram for the...Ch. 13 - Draw a structural formula for the activated...Ch. 13 - Prob. 13.14QPCh. 13 - Prob. 13.15QPCh. 13 - Prob. 13.16QPCh. 13 - Prob. 13.17QPCh. 13 - Prob. 13.18QPCh. 13 - The dissociation of N2O4 into NO2, N2O4(g)2NO2(g)...Ch. 13 - Prob. 13.20QPCh. 13 - Prob. 13.21QPCh. 13 - Prob. 13.22QPCh. 13 - You are running the reaction 2A+BC+3D. Your lab...Ch. 13 - At a constant temperature, which of the following...Ch. 13 - Consider the reaction E+FG+H, which has the...Ch. 13 - The hypothetical reaction A+B+CD+E has the rate...Ch. 13 - Kinetics I Consider the hypothetical reaction A(g)...Ch. 13 - Kinetics II You and a friend are working together...Ch. 13 - Consider the reaction 3A2B+C. a One rate...Ch. 13 - Given the reaction 2A+BC+3D, can you write the...Ch. 13 - The reaction 2A(g)A2(g) is being run in each of...Ch. 13 - Prob. 13.32QPCh. 13 - You perform some experiments for the reaction AB+C...Ch. 13 - A friend of yours runs a reaction and generates...Ch. 13 - Prob. 13.35QPCh. 13 - You carry out the following reaction by...Ch. 13 - Prob. 13.37QPCh. 13 - The chemical reaction AB+C has a rate constant...Ch. 13 - Relate the rate of decomposition of NH4NO2 to the...Ch. 13 - For the reaction of hydrogen with iodine...Ch. 13 - To obtain the rate of the reaction...Ch. 13 - To obtain the rate of the reaction...Ch. 13 - Ammonium nitrite, NH4NO2, decomposes in solution,...Ch. 13 - Iron(III) chloride is reduced by tin(II) chloride....Ch. 13 - Azomethane, CH3NNCH3, decomposes according to the...Ch. 13 - Nitrogen dioxide, NO2, decomposes upon heating to...Ch. 13 - Hydrogen sulfide is oxidized by chlorine in...Ch. 13 - For the reaction of nitrogen monoxide, NO, with...Ch. 13 - Prob. 13.49QPCh. 13 - Prob. 13.50QPCh. 13 - In experiments on the decomposition of azomethane....Ch. 13 - Ethylene oxide. C2H4O, decomposes when heated to...Ch. 13 - Nitrogen monoxide NO, reacts with hydrogen to give...Ch. 13 - In a kinetic study of the reaction...Ch. 13 - Chlorine dioxide, ClO2, is a reddish-yellow gas...Ch. 13 - Iodide ion is oxidized to hypoiodite ion, IO, by...Ch. 13 - Sulfuryl chloride, SO2Cl2, decomposes when heated....Ch. 13 - Cyclopropane, C3H6, is converted to its isomer...Ch. 13 - A reaction of the form aA Products is second-order...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - Ethyl chloride, CH3CH2Cl, used to produce...Ch. 13 - Cyclobutane, C4H8, consisting of molecules in...Ch. 13 - Methyl isocyanide, CH3NC, isomerizes, when heated,...Ch. 13 - Dinitrogen pentoxide, N2O5, decomposes when heated...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - It is found that a gas undergoes a zero-order...Ch. 13 - The reaction AB+C is found to be zero order. If it...Ch. 13 - Chlorine dioxide oxidizes iodide ion in aqueous...Ch. 13 - Methyl acetate, CH3COOCH3, reacts in basic...Ch. 13 - Sketch a potential-energy diagram for the reaction...Ch. 13 - Sketch a potential-energy diagram for the...Ch. 13 - In a series of experiments on the decomposition of...Ch. 13 - The reaction 2NOCl(g)2NO(g)+Cl2(g) has...Ch. 13 - The rate of a particular reaction increases by a...Ch. 13 - The rate of a particular reaction quadruples when...Ch. 13 - The following values of the rate constant were...Ch. 13 - The following values of the rate constant were...Ch. 13 - Nitrogen monoxide, NO, is believed to react with...Ch. 13 - The decomposition of ozone is believed to occur in...Ch. 13 - Identify the molecularity of each of the following...Ch. 13 - Prob. 13.86QPCh. 13 - Write a rate equation, showing the dependence of...Ch. 13 - Prob. 13.88QPCh. 13 - The isomerization of cyclopropane, C3H6, is...Ch. 13 - The thermal decomposition of nitryl chloride,...Ch. 13 - The reaction H2(g)+I2(g)2HI(g) may occur by the...Ch. 13 - Ozone decomposes to oxygen gas. 2O3(g)3O2(g) A...Ch. 13 - The following is a possible mechanism for a...Ch. 13 - Consider the following mechanism for a reaction in...Ch. 13 - A study of the decomposition of azomethane,...Ch. 13 - Nitrogen dioxide decomposes when heated....Ch. 13 - Prob. 13.97QPCh. 13 - Prob. 13.98QPCh. 13 - Methyl acetate reacts in acidic solution....Ch. 13 - Benzene diazonium chloride, C6H5NNCl, decomposes...Ch. 13 - What is the half-life of methyl acetate hydrolysis...Ch. 13 - What is the half-life of benzene diazonium...Ch. 13 - A compound decomposes by a first-order reaction....Ch. 13 - A compound decomposes by a first-order reaction....Ch. 13 - Butadiene can undergo the following reaction to...Ch. 13 - Prob. 13.106QPCh. 13 - Prob. 13.107QPCh. 13 - A second-order decomposition reaction run at 550oC...Ch. 13 - Prob. 13.109QPCh. 13 - Prob. 13.110QPCh. 13 - Prob. 13.111QPCh. 13 - Prob. 13.112QPCh. 13 - The decomposition of nitrogen dioxide,...Ch. 13 - Prob. 13.114QPCh. 13 - Prob. 13.115QPCh. 13 - Prob. 13.116QPCh. 13 - Nitryl bromide, NO2Br, decomposes into nitrogen...Ch. 13 - Tertiary butyl chloride reacts in basic solution...Ch. 13 - Urea, (NH2)2CO, can be prepared by heating...Ch. 13 - Prob. 13.120QPCh. 13 - A study of the gas-phase oxidation of nitrogen...Ch. 13 - The reaction of water with CH3Cl in acetone as a...Ch. 13 - The reaction of thioacelamidc with water is shown...Ch. 13 - Prob. 13.124QPCh. 13 - Prob. 13.125QPCh. 13 - Prob. 13.126QPCh. 13 - Prob. 13.127QPCh. 13 - Prob. 13.128QPCh. 13 - Prob. 13.129QPCh. 13 - Prob. 13.130QPCh. 13 - The rate constant for a certain reaction is 1.4 ...Ch. 13 - The decomposition of hydrogen peroxide is a first...Ch. 13 - Prob. 13.133QPCh. 13 - What is the rate law for the following gas-phase...Ch. 13 - A possible mechanism for a gas-phase reaction is...Ch. 13 - Say you run the following elementary, termolecular...Ch. 13 - Prob. 13.137QPCh. 13 - For the decomposition of one mole of nitrosyl...Ch. 13 - Given the following mechanism for a chemical...Ch. 13 - The following data were collected for the reaction...Ch. 13 - A hypothetical reaction has the two-step mechanism...Ch. 13 - Prob. 13.142QPCh. 13 - Prob. 13.143QPCh. 13 - Prob. 13.144QPCh. 13 - Dinitrogen pentoxide decomposes according to the...Ch. 13 - Prob. 13.146QPCh. 13 - Dinitrogen pentoxide, N2O5, undergoes first-order...Ch. 13 - Prob. 13.148QPCh. 13 - Hydrogen peroxide in aqueous solution decomposes...Ch. 13 - Nitrogen dioxide reacts with carbon monoxide by...Ch. 13 - Nitrogen monoxide reacts with oxygen to give...Ch. 13 - Nitrogen monoxide reacts with hydrogen as follows:...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY