(a)
Interpretation:
The rate formation of
Concept introduction:
Rate law: It is an equation that related to the
Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.
- The change in concentration term is divided by the respective
stoichiometric coefficient . - The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
- Rate of reaction is always represented by positive quantities.
(b)
Interpretation:
The rate consumption of
Concept introduction:
Rate law: It is an equation that related to the rate of reaction to the concentrations or pressures of substrates (reactants). It is also said to be as rate equation.
Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.
- The change in concentration term is divided by the respective stoichiometric coefficient.
- The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
- Rate of reaction is always represented by positive quantities.
(c)
Interpretation:
The rate formation of
Concept introduction:
Rate law: It is an equation that related to the rate of reaction to the concentrations or pressures of substrates (reactants). It is also said to be as rate equation.
Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.
- The change in concentration term is divided by the respective stoichiometric coefficient.
- The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
- Rate of reaction is always represented by positive quantities.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
CHEMISTRY 1111 LAB MANUAL >C<
- Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor.arrow_forward: Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor. SO₂ NO3arrow_forward1d. Use Le Chatelier's principle to describe the effect of the following changes on the position of the Haber-Bosch equilibrium: N2(g) + 3H2(g)= 2NH3(9) AH = -92kJ Choose one of the following answers: shift to reactant side, shift to product side or no change and draw the resulting graph. I. Increase the [N2(g)] Effect: H₂ N₂ NH3 II. Decrease the volume of the container. Effect: H₂ N₂2 NH3arrow_forward
- f) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? CH2 1.60Å H₂C * H₂C CH2 C H2C * C Of H₂ 120°arrow_forwarde) Determine the hybridization and geometry around the indicated carbon atoms. H3C CH3 B HC CH2 A C C C CH3arrow_forwardDon't used Ai solution and hand raitingarrow_forward
- Don't used Ai solutionarrow_forwardDon't used Ai solution and hand raitingarrow_forward75.0 grams of an unknown metal was heated to 95.0°C, it was then placed into 150.0 grams of water at23.1°C, when the metal and water reached thermal equilibrium, the temperature was 27.8°C. Calculatethe specific heat of the metal. (Assume that the specific heat of water is 4.18 J/g °C)arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning