
(a)
Interpretation:
The total molarity of ions for each solution is to be calculated.
Concept introduction:
Molarity is defined as the number of moles of solute that are dissolved in one litre of solution. It is represented by
The formula to calculate the molarity of the solution is as follows:
(a)

Answer to Problem 13.117P
The total molarity of ions of solutions A, B and C are
Explanation of Solution
The formula to calculate the total molarity of ions of the solution is as follows:
Solution A has a total of 8 spheres.
Substitute 8 spheres for the number of spheres and
Solution B has a total of 10 spheres.
Substitute 10 spheres for the number of spheres and
Solution C has a total of 12 spheres.
Substitute 12 spheres for the number of spheres and
The total molarity of ions of solutions A, B and C are
(b)
Interpretation:
The highest molarity of the solute is to be determined.
Concept introduction:
Molarity is defined as the number of moles of solute that are dissolved in one litre of solution. It is represented by
The formula to calculate the molarity of the solution is as follows:
(b)

Answer to Problem 13.117P
Solution A has the highest molarity.
Explanation of Solution
The formula to calculate the molarity of the compound is as follows:
Solution A has a total of 8 spheres and the moles of dissociated ions are two (one positive and one negative charge).
Substitute 8 spheres for the number of spheres,
Solution B has a total of 10 spheres and the moles of dissociated ions are two (one positive and one negative charge).
Substitute 10 spheres for the number of spheres,
Solution C has a total of 12 spheres and the moles of dissociated ions are three (two positive and one negative charge).
Substitute 12 spheres for the number of spheres,
Solution A has the highest molarity.
Solution A has the highest molarity.
(c)
Interpretation:
The lowest molality of solute is to be calculated.
Concept introduction:
Molality is the measure of the concentration of solute in the solution. It is the amount of solute that is dissolved in one kilogram of the solvent. It is represented by
The formula to calculate the molality of the solution is as follows:
The density of the substance is defined as the mass per unit volume. It is represented by
The formula to calculate the density of the solution is as follows:
(c)

Answer to Problem 13.117P
Solution C has the lowest molality.
Explanation of Solution
Rearrange equation (5) to calculate the mass of the substance as follows:
Consider the equal densities of all the three solutions to be
Substitute
Substitute
Substitute
The formula to calculate the molality of the compound is as follows:
Solution A has a total of 8 spheres and the moles of dissociated ions are two (one positive and one negative charge).
Substitute 8 spheres for the number of spheres,
Solution B has a total of 10 spheres and the moles of dissociated ions are two (one positive and one negative charge).
Substitute 10 spheres for the number of spheres,
Solution C has a total of 12 spheres and the moles of dissociated ions are three (two positive and one negative charge).
Substitute 12 spheres for the number of spheres,
Solution C has the lowest molality.
Solution C has the lowest molality.
(d)
Interpretation:
The highest osmotic pressure is to be calculated.
Concept introduction:
The osmotic pressure is defined as the measure of the tendency of a solution to take in pure solvent via osmosis. It is defined as the minimum pressure that is to be applied to the solution to prevent the inward flow of the pure solvent across the semipermeable membrane. Osmosis occurs when two solutions have different concentrations of solute and are separated by a semipermeable membrane.
The formula to calculate the osmotic pressure of the solution is as follows:
Here,
(d)

Answer to Problem 13.117P
Solution A has the highest osmotic pressure.
Explanation of Solution
Consider the temperature to be
Solution A breaks into two ions so its van’t Hoff factor is 2.
Substitute 2 for
Solution B breaks into two ions so its van’t Hoff factor is 2.
Substitute 2 for
Solution C breaks into three ions so its van’t Hoff factor is 3.
Substitute 3 for
Solution A has the highest osmotic pressure.
Solution A has the highest osmotic pressure.
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- Calculating standard reaction free energy from standard reduction... Using standard reduction potentials from the ALEKS Data tab, calculate the standard reaction free energy AG° for the following redox reaction. Be sure your answer has the correct number of significant digits. 3Cu+ (aq) + Cro²¯ (aq) +4H₂O (1) → 3Cu²+ (aq) +Cr(OH)3 (s)+5OH˜¯ (aq) 0 kJ ☐ x10 00. 18 Ararrow_forwardCalculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 241.7 mL of a 0.4900M solution of methylamine (CH3NH2) with a 0.7800M solution of HNO3. The pK of methylamine is 3.36. Calculate the pH of the base solution after the chemist has added 17.7 mL of the HNO3 solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HNO3 solution added. Round your answer to 2 decimal places. pH = ☑ ? 18 Ararrow_forwardThe following is two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 223.4 148.7 353.7 278.2 334.6 268.7 305.6 234.4 340.0 262.7 304.3 283.2 244.7 143.6 QUESTION: For both groups of data calculate the answers attached in the image.arrow_forward
- The following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 340.0mmol/L 262.7mmol/L QUESTION: For both groups (Regular & Salt Reduced tomato sauce) of data provide answers to the following calculations below: 1. Standard Deviation (Sx) 2. T Values (t0.05,4) 3. 95% Confidence Interval (mmol/L) 4. [Na+] (mg/100 mL) 5. 95% Confidence Interval (mg/100 mL)arrow_forwardIf we have leucine (2-amino-4-methylpentanoic acid), alanine (2-aminopropanoic acid) and phenylalanine (2-amino-3-phenylpropanoic acid), indicate the tripeptides that can be formed (use the abbreviated symbols Leu., Ala and Phe).arrow_forwardBriefly state why trifluoroacetic acid is more acidic than acetic acid.arrow_forward
- Explain why acid chlorides are more reactive than amides in reactions with nucleophiles.arrow_forwardCalculating the pH of a weak base titrated with a strong acid An analytical chemist is titrating 101.7 mL of a 0.3500M solution of piperidine (C5H10NH) with a 0.05700M solution of HClO4. The pK of piperidine is 2.89. Calculate the pH of the base solution after the chemist has added 682.9 mL of the HClO solution to it. 4 Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of HClO solution added. 4 Round your answer to 2 decimal places. pH = .11 00. 18 Ararrow_forwardThe following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 340.0 262.7 QUESTION: For both groups of data provide answers to the calculations attached in the imagearrow_forward
- 7. Concentration and uncertainty in the estimate of concentration (class data) Class mean for sample (Regular) |[Cl-] (mmol/L) class mean Sn za/2 95% Confidence Interval (mmol/L) [Na+] (mg/100 mL) 95% Confidence Interval (mg/100 mL)arrow_forwardThe following is a two groups (Regular tomato sauce & Salt Reduced Tomato Sauce) of data recorded by a team analysising salt content in tomato sauce using the MOHR titration method: Regular Tomato Sauce Salt Reduced Tomato Sauce 223.4 148.7 353.7 278.2 334.6 268.7 305.6 234.4 340.0 262.7 304.3 283.2 244.7 143.6 QUESTION: For both groups of data calculate the answers attached in the image.arrow_forwardGive reason(s) for six from the followings [using equations if possible] a. Addition of sodium carbonate to sulfanilic acid in the Methyl Orange preparation. b. What happened if the diazotization reaction gets warmed up by mistake. c. Addition of sodium nitrite in acidified solution in MO preparation through the diazotization d. Using sodium dithionite dihydrate in the second step for Luminol preparation. e. In nitroaniline preparation, addition of the acid mixture (nitric acid and sulfuric acid) to the product of step I. f. What is the main reason of the acylation step in nitroaniline preparation g. Heating under reflux. h. Fusion of an organic compound with sodium. HAND WRITTEN PLEASEarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





