Thinking Like an Engineer
Thinking Like an Engineer
4th Edition
ISBN: 9781269910989
Author: Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland
Publisher: Pearson Learning Solutions
bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 12RQ

When a fluid flows around an object, it creates a force, called the drag force, that pulls on the object. The coefficient of drag (Cd) is a dimensionless number that describes the relationship between the force created and the fluid and object properties, given as

C d = F D 1 2 ρ υ 2 A P

Where FD is drag force, ρ is the fluid density, and υ is the velocity of the object relative to the fluid. The area of the object the force acts upon is AP, and for spheres is given by the area of a circle. The Reynolds number in this situation is written as

Re = D P ρ υ μ

where DP is the diameter of the object the force acts upon. The following chart shows this relationship. The dashed lines show the predicted theories of Stokes and Newton compared to the solid line of actual results.

  1. a. If the Reynolds number is 500, what is the coefficient of drag?
  2. b. If the coefficient of drag is 2, what is the Reynolds number?

    Ethylene glycol has a dynamic viscosity of 9.13 centipoise and a specific gravity of 1.109.

  3. c. If the fluid flows around a sphere of diameter 1 centimeter travelling at a velocity of 2.15 centimeters per second, determine the drag force on the particle in units of newtons. (Hint: First determine the Reynolds number.)
  4. d. If a coefficient of drag of 10 is produced, what is the diameter of the particle? Assume the fluid moving at 1 centimeter per second (Hint: First determine the Reynolds number.)

Chapter 13, Problem 12RQ, When a fluid flows around an object, it creates a force, called the drag force, that pulls on the

Blurred answer
Students have asked these similar questions
An aluminum rod of length L = 1m has mass density p = 2700 kg and Young's modulus E = 70 GPa. The rod is fixed at both ends. The exact natural eigenfrequencies of the rod are wexact E = √ ρ for n=1,2,3,. . . . 1. What is the minimum number of linear elements necessary to determine the fundamental frequency w₁ of the system? Discretize the rod in that many elements of equal length, assemble the global system of equations KU = w² MU, and find the fundamental frequency w₁. Compute the relative error e₁ = (w1 - wexact) /w exact Sketch the fundamental mode of vibration. 2. Use COMSOL to solve the same problem. Show the steps necessary to find the fundamental frequency and mode of the rod. What is the relative error using linear elements and a normal mesh?
A ball with a mass of 5.0 kg is hanging from a string and is initially at rest. A bullet with a mass of 10.0 g and a velocity of 200.0 m/s is fired at the ball. The bullet embeds itself inside the ball. How high (h) do the ball and the bullet rise? Gravitational acceleration: g=9.81g = 9.81g=9.81 m/s².
Don't use chatgpt. Need handwritten solution. Mechanical engineering

Chapter 13 Solutions

Thinking Like an Engineer

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY