A 0.010 M solution of the weak acid HA has an osmotic pressure (see chapter on solutions and colloids) of 0.293 atm at 25 °C. A 0.010 M solution of the weak acid HB has an osmotic pressure of 0.345 atm under the same conditions. (a) Which acid has the larger equilibrium constant for ionization HA [ HA ( a q ) ⇌ A − ( a q ) + H + ( a q ) ] or HB [ HB ( a q ) ⇌ H + ( a q ) + B − ( a q ) ] ? (b) What are the equilibrium constants for the ionization of these acids? (Hint: Remember that each solution contains three dissolved species: the weak acid (HA or HB). the conjugate base (A- or B- and the hydrogen ion (H + ). Remember that osmotic pressure (like all colligative properties) is related to the total number of solute particles. Specifically for osmotic pressure, those concentrations are described by molarities.)
A 0.010 M solution of the weak acid HA has an osmotic pressure (see chapter on solutions and colloids) of 0.293 atm at 25 °C. A 0.010 M solution of the weak acid HB has an osmotic pressure of 0.345 atm under the same conditions. (a) Which acid has the larger equilibrium constant for ionization HA [ HA ( a q ) ⇌ A − ( a q ) + H + ( a q ) ] or HB [ HB ( a q ) ⇌ H + ( a q ) + B − ( a q ) ] ? (b) What are the equilibrium constants for the ionization of these acids? (Hint: Remember that each solution contains three dissolved species: the weak acid (HA or HB). the conjugate base (A- or B- and the hydrogen ion (H + ). Remember that osmotic pressure (like all colligative properties) is related to the total number of solute particles. Specifically for osmotic pressure, those concentrations are described by molarities.)
A 0.010 M solution of the weak acid HA has an osmotic pressure (see chapter on solutions and colloids) of 0.293 atm at 25 °C. A 0.010 M solution of the weak acid HB has an osmotic pressure of 0.345 atm under the same conditions.
(a) Which acid has the larger equilibrium constant for ionization
HA
[
HA
(
a
q
)
⇌
A
−
(
a
q
)
+
H
+
(
a
q
)
]
or
HB
[
HB
(
a
q
)
⇌
H
+
(
a
q
)
+
B
−
(
a
q
)
]
?
(b) What are the equilibrium constants for the ionization of these acids?
(Hint: Remember that each solution contains three dissolved species: the weak acid (HA or HB). the conjugate base (A- or B- and the hydrogen ion (H+). Remember that osmotic pressure (like all colligative properties) is related to the total number of solute particles. Specifically for osmotic pressure, those concentrations are described by molarities.)
In the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3
On the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.
Rank the compounds below from lowest to highest melting point.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.