ORGANIC CHEMISTRY
ORGANIC CHEMISTRY
6th Edition
ISBN: 9781266633973
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 12C.6, Problem 15P
Interpretation Introduction

(a)

Interpretation: The number of peaks for each indicated proton is to be predicted.

Concept introduction: The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. Protons which are present in the same chemical environment that is between the same group of atoms are known as chemically equivalent protons and in 1HNMR all chemically equivalent proton generates one signal or one peak, whereas non-equivalent proton generates different signals.

Interpretation Introduction

(b)

Interpretation: The number of peaks for each indicated proton is to be predicted.

Concept introduction: The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. Protons which are present in the same chemical environment that is between the same group of atoms are known as chemically equivalent protons and in 1HNMR all chemically equivalent proton generates one signal or one peak, whereas non-equivalent proton generates different signals.

Interpretation Introduction

(c)

Interpretation: The number of peaks for each indicated proton is to be predicted.

Concept introduction: The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. Protons which are present in the same chemical environment that is between the same group of atoms are known as chemically equivalent protons and in 1HNMR all chemically equivalent proton generates one signal or one peak, whereas non-equivalent proton generates different signals.

Interpretation Introduction

(d)

Interpretation: The number of peaks for each indicated proton is to be predicted.

Concept introduction: The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. Protons which are present in the same chemical environment that is between the same group of atoms are known as chemically equivalent protons and in 1HNMR all chemically equivalent proton generates one signal or one peak, whereas non-equivalent proton generates different signals.

Interpretation Introduction

(e)

Interpretation: The number of peaks for each indicated proton is to be predicted.

Concept introduction: The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. Protons which are present in the same chemical environment that is between the same group of atoms are known as chemically equivalent protons and in 1HNMR all chemically equivalent proton generates one signal or one peak, whereas non-equivalent proton generates different signals.

Interpretation Introduction

(f)

Interpretation: The number of peaks for each indicated proton is to be predicted.

Concept introduction: The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. Protons which are present in the same chemical environment that is between the same group of atoms are known as chemically equivalent protons and in 1HNMR all chemically equivalent proton generates one signal or one peak, whereas non-equivalent proton generates different signals.

Blurred answer
Students have asked these similar questions
Predict the major organic product(s) of the following reactions. Indicate which of the following mechanisms is in operation: SN1, SN2, E1, or E2.
(c) (4pts) Mechanism: heat (E1) CH3OH + 1.5pts each _E1 _ (1pt) Br CH3OH (d) (4pts) Mechanism: SN1 (1pt) (e) (3pts) 1111 I H 10 Ill!! H LDA THF (solvent) Mechanism: E2 (1pt) NC (f) Bri!!!!! CH3 NaCN (3pts) acetone Mechanism: SN2 (1pt) (SN1) -OCH3 OCH3 1.5pts each 2pts for either product 1pt if incorrect stereochemistry H Br (g) “,、 (3pts) H CH3OH +21 Mechanism: SN2 (1pt) H CH3 2pts 1pt if incorrect stereochemistry H 2pts 1pt if incorrect stereochemistry
A mixture of butyl acrylate and 4'-chloropropiophenone has been taken for proton NMR analysis. Based on this proton NMR, determine the relative percentage of each compound in the mixture

Chapter 12C Solutions

ORGANIC CHEMISTRY

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Pushing Electrons
Chemistry
ISBN:9781133951889
Author:Weeks, Daniel P.
Publisher:Cengage Learning