Gradients in three dimensions Consider the following functions f, points P, and unit vectors u . a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 59. f ( x , y , z ) = 1 + sin ( x + 2 y − z ) ; P ( π 6 , π 6 , − π 6 ) ; 〈 1 3 ′ 2 3 ′ 2 3 〉
Gradients in three dimensions Consider the following functions f, points P, and unit vectors u . a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 59. f ( x , y , z ) = 1 + sin ( x + 2 y − z ) ; P ( π 6 , π 6 , − π 6 ) ; 〈 1 3 ′ 2 3 ′ 2 3 〉
Gradients in three dimensionsConsider the following functions f, points P, and unit vectorsu.
a.Compute the gradient of f and evaluate it at P
b.Find the unit vector in the direction of maximum increase of f at P.
c.Find the rate of change of the function in the direction of maximum increase at P.
d.Find the directional derivative at P in the direction of the given vector.
59.
f
(
x
,
y
,
z
)
=
1
+
sin
(
x
+
2
y
−
z
)
;
P
(
π
6
,
π
6
,
−
π
6
)
;
〈
1
3
′
2
3
′
2
3
〉
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
I would need help with a, b, and c as mention below.
(a) Find the gradient of f.(b) Evaluate the gradient at the point P.(c) Find the rate of change of f at P in the direction of the vector u.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.