Calculus: Early Transcendentals (2nd Edition)
2nd Edition
ISBN: 9780321947345
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.4, Problem 62E
To determine
To estimate: The value of the partial derivative
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a is done please show b
A homeware company has been approached to manufacture a cake tin in the shape
of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the
games launch. The base of the cake tin has a characteristic dimension / and is
illustrated in Figure 1 below, you should assume the top and bottom of the shape
can be represented by semi-circles. The vertical sides of the cake tin have a height of
h. As the company's resident mathematician, you need to find the values of r and h
that minimise the internal surface area of the cake tin given that the volume of the
tin is Vfixed-
2r
Figure 1 - Plan view of the "ghost" cake tin base.
(a) Show that the Volume (V) of the cake tin as a function of r and his
2(+1)²h
V = 2
15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.
Chapter 12 Solutions
Calculus: Early Transcendentals (2nd Edition)
Ch. 12.1 - Give two pieces of information which, taken...Ch. 12.1 - Find a vector normal to the plane 2x 3y + 4z =...Ch. 12.1 - Where does the plane 2x 3y + 4z = 12 intersect...Ch. 12.1 - Give an equation of the plane with a normal vector...Ch. 12.1 - To which coordinate axes are the following...Ch. 12.1 - Describe the graph of x = z2 in 3.Ch. 12.1 - What is a trace of a surface?Ch. 12.1 - What is the name of the surface defined by the...Ch. 12.1 - What is the name of the surface defined by the...Ch. 12.1 - What is the name of the surface defined by the...
Ch. 12.1 - Equations of planes Find an equation of the plane...Ch. 12.1 - Prob. 12ECh. 12.1 - Equations of planes Find an equation of the plane...Ch. 12.1 - Equations of planes Find an equation of the plane...Ch. 12.1 - Equation of a plane Find an equation of the plane...Ch. 12.1 - Equation of a plane Find an equation of the plane...Ch. 12.1 - Equations of planes Find an equation of the...Ch. 12.1 - Equations of planes Find an equation of the...Ch. 12.1 - Equations of planes Find an equation of the...Ch. 12.1 - Equations of planes Find an equation of the...Ch. 12.1 - Properties of planes Find the points at which the...Ch. 12.1 - Prob. 22ECh. 12.1 - Properties of planes Find the points at which the...Ch. 12.1 - Prob. 24ECh. 12.1 - Pairs of planes Determine whether the following...Ch. 12.1 - Pairs of planes Determine whether the following...Ch. 12.1 - Pairs of planes Determine whether the following...Ch. 12.1 - Pairs of planes Determine whether the following...Ch. 12.1 - Equations of planes For the following sets of...Ch. 12.1 - Equations of planes For the following sets of...Ch. 12.1 - Parallel planes Find an equation of the plane...Ch. 12.1 - Prob. 32ECh. 12.1 - Prob. 33ECh. 12.1 - Prob. 34ECh. 12.1 - Intersecting planes Find an equation of the line...Ch. 12.1 - Intersecting planes Find an equation of the line...Ch. 12.1 - Intersecting planes Find an equation of the line...Ch. 12.1 - Intersecting planes Find an equation of the line...Ch. 12.1 - Cylinders in 3 Consider the following cylinders in...Ch. 12.1 - Cylinders in 3 Consider the following cylinders in...Ch. 12.1 - Cylinders in 3 Consider the following cylinders in...Ch. 12.1 - Cylinders in 3 Consider the following cylinders in...Ch. 12.1 - Cylinders in 3 Consider the following cylinders in...Ch. 12.1 - Cylinders in 3 Consider the following cylinders in...Ch. 12.1 - Cylinders in 3 Consider the following cylinders in...Ch. 12.1 - Cylinders in 3 Consider the following cylinders in...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Prob. 54ECh. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Prob. 58ECh. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Prob. 64ECh. 12.1 - Prob. 65ECh. 12.1 - Prob. 66ECh. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Prob. 68ECh. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Quadric surfaces Consider the following equations...Ch. 12.1 - Explain why or why not Determine whether the...Ch. 12.1 - Prob. 72ECh. 12.1 - Lines normal to planes Find an equation of the...Ch. 12.1 - Lines normal to planes Find an equation of the...Ch. 12.1 - Prob. 75ECh. 12.1 - Orthogonal plane Find an equation of the plane...Ch. 12.1 - Three intersecting planes Describe the set of all...Ch. 12.1 - Three intersecting planes Describe the set of all...Ch. 12.1 - Matching graphs with equations Match equations af...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Identifying surfaces Identify and briefly describe...Ch. 12.1 - Prob. 90ECh. 12.1 - Prob. 91ECh. 12.1 - Prob. 92ECh. 12.1 - Prob. 93ECh. 12.1 - Prob. 94ECh. 12.1 - Angle between planes The angle between two planes...Ch. 12.1 - Prob. 96ECh. 12.1 - Light cones The idea of a light cone appears in...Ch. 12.1 - Prob. 100ECh. 12.1 - Prob. 102ECh. 12.1 - Prob. 103ECh. 12.1 - Prob. 104ECh. 12.2 - What is domain of f(x, y) = x2y xy2?Ch. 12.2 - What is the domain of g(x, y) = 1/(xy)?Ch. 12.2 - What is the domain of h(x,y)=xy?Ch. 12.2 - How many axes (or how many dimensions) are needed...Ch. 12.2 - Explain how to graph the level curves of a surface...Ch. 12.2 - Describe in words the level curves of the...Ch. 12.2 - How many axes (or how many dimensions) are needed...Ch. 12.2 - The domain of Q = f(u, v, w, x, y, z) lies in n...Ch. 12.2 - Give two methods for graphically representing a...Ch. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Prob. 12ECh. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Domains Find the domain of the following...Ch. 12.2 - Graphs of familiar functions Use what you learned...Ch. 12.2 - Graphs of familiar functions Use what you learned...Ch. 12.2 - Graphs of familiar functions Use what you learned...Ch. 12.2 - Graphs of familiar functions Use what you learned...Ch. 12.2 - Graphs of familiar functions Use what you learned...Ch. 12.2 - Graphs of familiar functions Use what you learned...Ch. 12.2 - Graphs of familiar functions Use what you learned...Ch. 12.2 - Prob. 28ECh. 12.2 - Matching surfaces Match functions ad with surfaces...Ch. 12.2 - Level curves Graph several level curves of the...Ch. 12.2 - Level curves Graph several level curves of the...Ch. 12.2 - Level curves Graph several level curves of the...Ch. 12.2 - Level curves Graph several level curves of the...Ch. 12.2 - Level curves Graph several level curves of the...Ch. 12.2 - Level curves Graph several level curves of the...Ch. 12.2 - Level curves Graph several level curves of the...Ch. 12.2 - Level curves Graph several level curves of the...Ch. 12.2 - Matching level curves with surfaces Match surfaces...Ch. 12.2 - Prob. 39ECh. 12.2 - Earned run average A baseball pitchers earned run...Ch. 12.2 - Electric potential function The electric potential...Ch. 12.2 - Cobb-Douglas production function The output Q of...Ch. 12.2 - Resistors in parallel Two resistors wired in...Ch. 12.2 - Water waves A snapshot of a water wave moving...Ch. 12.2 - Approximate mountains Suppose the elevation of...Ch. 12.2 - Domains of functions of three or more variables...Ch. 12.2 - Domains of functions of three or more variables...Ch. 12.2 - Domains of functions of three or more variables...Ch. 12.2 - Domains of functions of three or more variables...Ch. 12.2 - Domains of functions of three or more variables...Ch. 12.2 - Domains of functions of three or more variables...Ch. 12.2 - Prob. 52ECh. 12.2 - Explain why or why not Determine whether the...Ch. 12.2 - Graphing functions a.Determine the domain and...Ch. 12.2 - Prob. 55ECh. 12.2 - Prob. 56ECh. 12.2 - Graphing functions a.Determine the domain and...Ch. 12.2 - Graphing functions a.Determine the domain and...Ch. 12.2 - Prob. 59ECh. 12.2 - Prob. 60ECh. 12.2 - Prob. 61ECh. 12.2 - Prob. 62ECh. 12.2 - Peaks and valleys The following functions have...Ch. 12.2 - Prob. 64ECh. 12.2 - Prob. 65ECh. 12.2 - Level surfaces Find an equation for the family of...Ch. 12.2 - Level surfaces Find an equation for the family of...Ch. 12.2 - Level surfaces Find an equation for the family of...Ch. 12.2 - Level surfaces Find an equation for the family of...Ch. 12.2 - Level curves of a savings account Suppose you make...Ch. 12.2 - Level curves of a savings plan Suppose you make...Ch. 12.2 - Prob. 72ECh. 12.2 - Ideal Gas Law Many gases can be modeled by the...Ch. 12.2 - Prob. 74ECh. 12.2 - Challenge domains Find the domains of the...Ch. 12.2 - Prob. 76ECh. 12.2 - Prob. 77ECh. 12.2 - Prob. 78ECh. 12.3 - Prob. 1ECh. 12.3 - Explain why f(x, y) must approach a unique number...Ch. 12.3 - What does it mean to say that limits of...Ch. 12.3 - Suppose (a, b) is on the boundary of the domain of...Ch. 12.3 - Explain how examining limits along multiple paths...Ch. 12.3 - Explain why evaluating a limit along a finite...Ch. 12.3 - What three conditions must be met for a function f...Ch. 12.3 - Let R be the unit disk {(x, y): x2 + y2 1} with...Ch. 12.3 - At what points of 2 is a rational function of two...Ch. 12.3 - Prob. 10ECh. 12.3 - Limits of functions Evaluate the following limits....Ch. 12.3 - Limits of functions Evaluate the following limits....Ch. 12.3 - Limits of functions Evaluate the following limits....Ch. 12.3 - Limits of functions Evaluate the following limits....Ch. 12.3 - Limits of functions Evaluate the following limits....Ch. 12.3 - Limits of functions Evaluate the following limits....Ch. 12.3 - Limits of functions Evaluate the following limits....Ch. 12.3 - Limits of functions Evaluate the following limits....Ch. 12.3 - Prob. 19ECh. 12.3 - Limits at boundary points Evaluate the following...Ch. 12.3 - Limits at boundary points Evaluate the following...Ch. 12.3 - Limits at boundary points Evaluate the following...Ch. 12.3 - Limits at boundary points Evaluate the following...Ch. 12.3 - Prob. 24ECh. 12.3 - Limits at boundary points Evaluate the following...Ch. 12.3 - Prob. 26ECh. 12.3 - Prob. 27ECh. 12.3 - Prob. 28ECh. 12.3 - Nonexistence of limits Use the Two-Path Test to...Ch. 12.3 - Prob. 30ECh. 12.3 - Nonexistence of limits Use the Two-Path Test to...Ch. 12.3 - Nonexistence of limits Use the Two-Path Test to...Ch. 12.3 - Continuity At what points of 2 are the following...Ch. 12.3 - Continuity At what points of 2 are the following...Ch. 12.3 - Continuity At what points of 2 are the following...Ch. 12.3 - Continuity At what points of 2 are the following...Ch. 12.3 - Continuity At what points of 2 are the following...Ch. 12.3 - Continuity At what points of 2 are the following...Ch. 12.3 - Continuity At what points of 2 are the following...Ch. 12.3 - Continuity At what points of 2 are the following...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Continuity of composite functions At what points...Ch. 12.3 - Limits of functions of three variables Evaluate...Ch. 12.3 - Limits of functions of three variables Evaluate...Ch. 12.3 - Limits of functions of three variables Evaluate...Ch. 12.3 - Limits of functions of three variables Evaluate...Ch. 12.3 - Limits of functions of three variables Evaluate...Ch. 12.3 - Limits of functions of three variables Evaluate...Ch. 12.3 - Prob. 59ECh. 12.3 - Miscellaneous limits Use the method of your choice...Ch. 12.3 - Miscellaneous limits Use the method of your choice...Ch. 12.3 - Miscellaneous limits Use the method of your choice...Ch. 12.3 - Prob. 63ECh. 12.3 - Miscellaneous limits Use the method of your choice...Ch. 12.3 - Miscellaneous limits Use the method of your choice...Ch. 12.3 - Prob. 66ECh. 12.3 - Miscellaneous limits Use the method of your choice...Ch. 12.3 - Prob. 68ECh. 12.3 - Prob. 69ECh. 12.3 - Prob. 70ECh. 12.3 - Prob. 71ECh. 12.3 - Prob. 72ECh. 12.3 - Piecewise function Let...Ch. 12.3 - Prob. 74ECh. 12.3 - Nonexistence of limits Show that...Ch. 12.3 - Prob. 76ECh. 12.3 - Limits of composite functions Evaluate the...Ch. 12.3 - Prob. 78ECh. 12.3 - Limits of composite functions Evaluate the...Ch. 12.3 - Limits of composite functions Evaluate the...Ch. 12.3 - Prob. 81ECh. 12.3 - Limit proof Use the formal definition of a limit...Ch. 12.3 - Limit proof Use the formal definition of a limit...Ch. 12.3 - Proof of Limit Law 1 Use the formal definition of...Ch. 12.3 - Proof of Limit Law 3 Use the formal definition of...Ch. 12.4 - Suppose you are standing on the surface z = f(x,...Ch. 12.4 - Prob. 2ECh. 12.4 - Prob. 3ECh. 12.4 - Prob. 4ECh. 12.4 - Prob. 5ECh. 12.4 - The volume of a right circular cylinder with...Ch. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Prob. 9ECh. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - Prob. 17ECh. 12.4 - Prob. 18ECh. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.4 - Prob. 25ECh. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.4 - Prob. 29ECh. 12.4 - Prob. 30ECh. 12.4 - Prob. 31ECh. 12.4 - Prob. 32ECh. 12.4 - Prob. 33ECh. 12.4 - Prob. 34ECh. 12.4 - Prob. 35ECh. 12.4 - Prob. 36ECh. 12.4 - Prob. 37ECh. 12.4 - Prob. 38ECh. 12.4 - Prob. 39ECh. 12.4 - Prob. 40ECh. 12.4 - Prob. 41ECh. 12.4 - Prob. 42ECh. 12.4 - Prob. 43ECh. 12.4 - Equality of mixed partial derivatives Verify that...Ch. 12.4 - Prob. 45ECh. 12.4 - Prob. 46ECh. 12.4 - Prob. 47ECh. 12.4 - Prob. 48ECh. 12.4 - Prob. 49ECh. 12.4 - Prob. 50ECh. 12.4 - Prob. 51ECh. 12.4 - Prob. 52ECh. 12.4 - Prob. 53ECh. 12.4 - Prob. 54ECh. 12.4 - Gas law calculations Consider the Ideal Gas Law PV...Ch. 12.4 - Prob. 56ECh. 12.4 - Nondifferentiability? Consider the following...Ch. 12.4 - Nondifferentiability? Consider the following...Ch. 12.4 - Prob. 59ECh. 12.4 - Prob. 60ECh. 12.4 - Prob. 61ECh. 12.4 - Prob. 62ECh. 12.4 - Prob. 63ECh. 12.4 - Prob. 64ECh. 12.4 - Prob. 65ECh. 12.4 - Miscellaneous partial derivatives Compute the...Ch. 12.4 - Prob. 67ECh. 12.4 - Prob. 68ECh. 12.4 - Prob. 69ECh. 12.4 - Spherical caps The volume of the cap of a sphere...Ch. 12.4 - Prob. 71ECh. 12.4 - Body mass index The body mass index (BMI) for an...Ch. 12.4 - Electric potential function The electric potential...Ch. 12.4 - Prob. 74ECh. 12.4 - Resistors in parallel Two resistors in an...Ch. 12.4 - Wave on a string Imagine a string that is fixed at...Ch. 12.4 - Wave equation Traveling waves (for example, water...Ch. 12.4 - Wave equation Traveling waves (for example, water...Ch. 12.4 - Wave equation Traveling waves (for example, water...Ch. 12.4 - Laplaces equation A classical equation of...Ch. 12.4 - Laplaces equation A classical equation of...Ch. 12.4 - Laplaces equation A classical equation of...Ch. 12.4 - Laplaces equation A classical equation of...Ch. 12.4 - Heat equation The flow of hear along a thin...Ch. 12.4 - Heat equation The flow of hear along a thin...Ch. 12.4 - Prob. 86ECh. 12.4 - Heat equation The flow of hear along a thin...Ch. 12.4 - Prob. 88ECh. 12.4 - Differentiability Use the definition of...Ch. 12.4 - Nondifferentiability? Consider the following...Ch. 12.4 - Nondifferentiability? Consider the following...Ch. 12.4 - Prob. 92ECh. 12.4 - Derivatives of an integral Let h be continuous for...Ch. 12.4 - Prob. 94ECh. 12.4 - Prob. 95ECh. 12.5 - Suppose z = f(x, y), where x and y are functions...Ch. 12.5 - Let z be a function of x and y, while x and y are...Ch. 12.5 - Suppose w is a function of x, y and z, which are...Ch. 12.5 - Let z = f(x, y), x = g(s, t), and y = h(s, t)....Ch. 12.5 - Given that w = F(x, y, z), and x, y, and z are...Ch. 12.5 - Suppose F(x, y) = 0 and y is a differentiable...Ch. 12.5 - Chain Rule with one independent variable Use...Ch. 12.5 - Prob. 8ECh. 12.5 - Chain Rule with one independent variable Use...Ch. 12.5 - Chain Rule with one independent variable Use...Ch. 12.5 - Chain Rule with one independent variable Use...Ch. 12.5 - Prob. 12ECh. 12.5 - Chain Rule with one independent variable Use...Ch. 12.5 - Prob. 14ECh. 12.5 - Chain Rule with one independent variable Use...Ch. 12.5 - Chain Rule with one independent variable Use...Ch. 12.5 - Changing cylinder The volume of a right circular...Ch. 12.5 - Changing pyramid The volume of a pyramid with a...Ch. 12.5 - Chain Rule with several independent variables Find...Ch. 12.5 - Chain Rule with several independent variables Find...Ch. 12.5 - Chain Rule with several independent variables Find...Ch. 12.5 - Chain Rule with several independent variables Find...Ch. 12.5 - Chain Rule with several independent variables Find...Ch. 12.5 - Prob. 24ECh. 12.5 - Chain Rule with several independent variables Find...Ch. 12.5 - Prob. 26ECh. 12.5 - Making trees Use a tree diagram to write the...Ch. 12.5 - Prob. 28ECh. 12.5 - Prob. 29ECh. 12.5 - Prob. 30ECh. 12.5 - Implicit differentiation Given the following...Ch. 12.5 - Implicit differentiation Given the following...Ch. 12.5 - Implicit differentiation Given the following...Ch. 12.5 - Implicit differentiation Given the following...Ch. 12.5 - Implicit differentiation Given the following...Ch. 12.5 - Implicit differentiation Given the following...Ch. 12.5 - Prob. 37ECh. 12.5 - Prob. 38ECh. 12.5 - Prob. 39ECh. 12.5 - Derivative practice two ways Find the indicated...Ch. 12.5 - Derivative practice two ways Find the indicated...Ch. 12.5 - Derivative practice Find the indicated derivative...Ch. 12.5 - Derivative practice Find the indicated derivative...Ch. 12.5 - Derivative practice Find the indicated derivative...Ch. 12.5 - Derivative practice Find the indicated derivative...Ch. 12.5 - Prob. 46ECh. 12.5 - Change on a line Suppose w=(x,y,z) and is the line...Ch. 12.5 - Prob. 48ECh. 12.5 - Prob. 49ECh. 12.5 - Prob. 50ECh. 12.5 - Prob. 51ECh. 12.5 - Prob. 52ECh. 12.5 - Walking on a surface Consider the following...Ch. 12.5 - Walking on a surface Consider the following...Ch. 12.5 - Walking on a surface Consider the following...Ch. 12.5 - Walking on a surface Consider the following...Ch. 12.5 - Conservation of energy A projectile with mass m is...Ch. 12.5 - Utility functions in economics Economists use...Ch. 12.5 - Constant volume tori The volume of a solid torus...Ch. 12.5 - Body surface area One of several empirical...Ch. 12.5 - Prob. 61ECh. 12.5 - Prob. 62ECh. 12.5 - Prob. 63ECh. 12.5 - Change of coordinates Recall that Cartesian and...Ch. 12.5 - Change of coordinates continued An important...Ch. 12.5 - Prob. 67ECh. 12.5 - Prob. 68ECh. 12.5 - Prob. 69ECh. 12.6 - Prob. 1ECh. 12.6 - How do you compute the gradient of the functions...Ch. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - Given a function f, explain the relationship...Ch. 12.6 - The level curves of the surface z=x2+y2 are...Ch. 12.6 - Directional derivatives Consider the function...Ch. 12.6 - Directional derivatives Consider the function...Ch. 12.6 - Computing gradients Compute the gradient of the...Ch. 12.6 - Computing gradients Compute the gradient of the...Ch. 12.6 - Computing gradients Compute the gradient of the...Ch. 12.6 - Computing gradients Compute the gradient of the...Ch. 12.6 - Computing gradients Compute the gradient of the...Ch. 12.6 - Computing gradients Compute the gradient of the...Ch. 12.6 - Computing gradients Compute the gradient of the...Ch. 12.6 - Computing gradients Compute the gradient of the...Ch. 12.6 - Computing directional derivatives with the...Ch. 12.6 - Computing directional derivatives with the...Ch. 12.6 - Prob. 19ECh. 12.6 - Computing directional derivatives with the...Ch. 12.6 - Computing directional derivatives with the...Ch. 12.6 - Prob. 22ECh. 12.6 - Computing directional derivatives with the...Ch. 12.6 - Computing directional derivatives with the...Ch. 12.6 - Computing directional derivatives with the...Ch. 12.6 - Computing directional derivatives with the...Ch. 12.6 - Direction of steepest ascent and descent Consider...Ch. 12.6 - Direction of steepest ascent and descent Consider...Ch. 12.6 - Direction of steepest ascent and descent Consider...Ch. 12.6 - Direction of steepest ascent and descent Consider...Ch. 12.6 - Direction of steepest ascent and descent Consider...Ch. 12.6 - Direction of steepest ascent and descent Consider...Ch. 12.6 - Interpreting directional derivatives A function f...Ch. 12.6 - Interpreting directional derivatives A function f...Ch. 12.6 - Interpreting directional derivatives A function f...Ch. 12.6 - Interpreting directional derivatives A function f...Ch. 12.6 - Interpreting directional derivatives A function f...Ch. 12.6 - Interpreting directional derivatives A function f...Ch. 12.6 - Prob. 39ECh. 12.6 - Prob. 40ECh. 12.6 - Prob. 41ECh. 12.6 - Prob. 42ECh. 12.6 - Level curves Consider the paraboloid f(x, y) = 16 ...Ch. 12.6 - Level curves Consider the paraboloid f(x, y) = 16 ...Ch. 12.6 - Level curves Consider the paraboloid f(x, y) = 16 ...Ch. 12.6 - Level curves Consider the paraboloid f(x, y) = 16 ...Ch. 12.6 - Level curves Consider the upper half of the...Ch. 12.6 - Level curves Consider the upper half of the...Ch. 12.6 - Level curves Consider the upper half of the...Ch. 12.6 - Prob. 50ECh. 12.6 - Path of steepest descent Consider each of the...Ch. 12.6 - Path of steepest descent Consider each of the...Ch. 12.6 - Path of steepest descent Consider each of the...Ch. 12.6 - Path of steepest descent Consider each of the...Ch. 12.6 - Gradients in three dimensions Consider the...Ch. 12.6 - Gradients in three dimensions Consider the...Ch. 12.6 - Gradients in three dimensions Consider the...Ch. 12.6 - Gradients in three dimensions Consider the...Ch. 12.6 - Gradients in three dimensions Consider the...Ch. 12.6 - Gradients in three dimensions Consider the...Ch. 12.6 - Gradients in three dimensions Consider the...Ch. 12.6 - Gradients in three dimensions Consider the...Ch. 12.6 - Explain why or why not Determine whether the...Ch. 12.6 - Gradient of a composite function Consider the...Ch. 12.6 - Directions of zero change Find the directions in...Ch. 12.6 - Prob. 66ECh. 12.6 - Directions of zero change Find the directions in...Ch. 12.6 - Directions of zero change Find the directions in...Ch. 12.6 - Steepest ascent on a plane Suppose a long sloping...Ch. 12.6 - Gradient of a distance function Let (a, b) be a...Ch. 12.6 - Looking aheadtangent planes Consider the following...Ch. 12.6 - Prob. 72ECh. 12.6 - Looking aheadtangent planes Consider the following...Ch. 12.6 - Prob. 74ECh. 12.6 - Prob. 75ECh. 12.6 - Prob. 76ECh. 12.6 - Prob. 77ECh. 12.6 - Prob. 78ECh. 12.6 - Prob. 79ECh. 12.6 - Prob. 80ECh. 12.6 - Rules for gradients Use the definition of the...Ch. 12.6 - Prob. 82ECh. 12.6 - Prob. 83ECh. 12.6 - Prob. 84ECh. 12.6 - Prob. 85ECh. 12.6 - Prob. 86ECh. 12.6 - Prob. 87ECh. 12.7 - Suppose n is a vector normal to the tangent plane...Ch. 12.7 - Write the explicit function z = xy2 + x2y 10 in...Ch. 12.7 - Write an equation for the plane tangent to the...Ch. 12.7 - Prob. 4ECh. 12.7 - Explain how to approximate a function f at a point...Ch. 12.7 - Explain how to approximate the change in a...Ch. 12.7 - Write the approximate change formula for a...Ch. 12.7 - Write the differential dw for the function w =...Ch. 12.7 - Tangent planes for F(x,y,z) = 0 Find an equation...Ch. 12.7 - Tangent planes for F(x,y,z) = 0 Find an equation...Ch. 12.7 - Tangent planes for F(x,y,z) = 0 Find an equation...Ch. 12.7 - Tangent planes for F(x,y,z) = 0 Find an equation...Ch. 12.7 - Tangent planes for F(x,y,z) = 0 Find an equation...Ch. 12.7 - Tangent planes for F(x, y, z) = 0 Find an equation...Ch. 12.7 - Tangent planes for F(x, y, z) = 0 Find an equation...Ch. 12.7 - Tangent planes for F(x, y, z) = 0 Find an equation...Ch. 12.7 - Tangent planes for z = f (x, y) Find an equation...Ch. 12.7 - Tangent planes for z = f (x, y) Find an equation...Ch. 12.7 - Tangent planes for z = f (x, y) Find an equation...Ch. 12.7 - Tangent planes for z = f (x, y) Find an equation...Ch. 12.7 - Tangent planes for z = f (x, y) Find an equation...Ch. 12.7 - Prob. 22ECh. 12.7 - Tangent planes for z = f (x, y) Find an equation...Ch. 12.7 - Tangent planes for z = f (x, y) Find an equation...Ch. 12.7 - Linear approximation a.Find the linear...Ch. 12.7 - Linear approximation a.Find the linear...Ch. 12.7 - Linear approximation a.Find the linear...Ch. 12.7 - Linear approximation a.Find the linear...Ch. 12.7 - Linear approximation a.Find the linear...Ch. 12.7 - Prob. 30ECh. 12.7 - Approximate function change Use differentials to...Ch. 12.7 - Approximate function change Use differentials to...Ch. 12.7 - Approximate function change Use differentials to...Ch. 12.7 - Approximate function change Use differentials to...Ch. 12.7 - Changes in torus surface area The surface area of...Ch. 12.7 - Changes in cone volume The volume of a right...Ch. 12.7 - Area of an ellipse The area of an ellipse with...Ch. 12.7 - Volume of a paraboloid The volume of a segment of...Ch. 12.7 - Differentials with more than two variables Write...Ch. 12.7 - Differentials with more than two variables Write...Ch. 12.7 - Differentials with more than two variables Write...Ch. 12.7 - Differentials with more than two variables Write...Ch. 12.7 - Law of Cosines The side lengths of any triangle...Ch. 12.7 - Explain why or why not Determine whether the...Ch. 12.7 - Tangent planes Find an equation of the plane...Ch. 12.7 - Tangent planes Find an equation of the plane...Ch. 12.7 - Tangent planes Find an equation of the plane...Ch. 12.7 - Tangent planes Find an equation of the plane...Ch. 12.7 - Horizontal tangent planes Find the points at which...Ch. 12.7 - Horizontal tangent planes Find the points at which...Ch. 12.7 - Horizontal tangent planes Find the points at which...Ch. 12.7 - Horizontal tangent planes Find the points at which...Ch. 12.7 - Prob. 54ECh. 12.7 - Surface area of a cone A cone with height h and...Ch. 12.7 - Line tangent to an intersection curve Consider the...Ch. 12.7 - Water-level changes A conical tank with radius...Ch. 12.7 - Prob. 59ECh. 12.7 - Floating-point operations In general, real numbers...Ch. 12.7 - Probability of at least one encounter Suppose that...Ch. 12.7 - Prob. 62ECh. 12.7 - Prob. 63ECh. 12.7 - Prob. 64ECh. 12.7 - Logarithmic differentials Let f be a...Ch. 12.8 - Describe the appearance of a smooth surface with a...Ch. 12.8 - Describe the usual appearance of a smooth surface...Ch. 12.8 - What are the conditions for a critical point of a...Ch. 12.8 - If fx (a, b) = fy (a, b) = 0, does it follow the f...Ch. 12.8 - Consider the function z = f(x, y). What is the...Ch. 12.8 - Prob. 6ECh. 12.8 - What is an absolute minimum value of a function f...Ch. 12.8 - What is the procedure for locating absolute...Ch. 12.8 - Critical points Find all critical points of the...Ch. 12.8 - Critical points Find all critical points of the...Ch. 12.8 - Critical points Find all critical points of the...Ch. 12.8 - Critical points Find all critical points of the...Ch. 12.8 - Critical points Find all critical points of the...Ch. 12.8 - Critical points Find all critical points of the...Ch. 12.8 - Critical points Find all critical points of the...Ch. 12.8 - Prob. 16ECh. 12.8 - Critical points Find all critical points of the...Ch. 12.8 - Prob. 18ECh. 12.8 - Prob. 19ECh. 12.8 - Prob. 20ECh. 12.8 - Prob. 21ECh. 12.8 - Prob. 22ECh. 12.8 - Prob. 23ECh. 12.8 - Prob. 24ECh. 12.8 - Analyzing critical points Find the critical points...Ch. 12.8 - Analyzing critical points Find the critical points...Ch. 12.8 - Prob. 27ECh. 12.8 - Prob. 28ECh. 12.8 - Analyzing critical points Find the critical points...Ch. 12.8 - Analyzing critical points Find the critical points...Ch. 12.8 - Prob. 31ECh. 12.8 - Prob. 32ECh. 12.8 - Analyzing critical points Find the critical points...Ch. 12.8 - Prob. 34ECh. 12.8 - Shipping regulations A shipping company handles...Ch. 12.8 - Cardboard boxes A lidless box is to be made using...Ch. 12.8 - Cardboard boxes A lidless cardboard box is to be...Ch. 12.8 - Optimal box Find the dimensions of the largest...Ch. 12.8 - Prob. 39ECh. 12.8 - Inconclusive tests Show that the Second Derivative...Ch. 12.8 - Prob. 41ECh. 12.8 - Inconclusive tests Show that the Second Derivative...Ch. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Prob. 51ECh. 12.8 - Absolute maxima and minima Find the absolute...Ch. 12.8 - Absolute extrema on open and / or unbounded...Ch. 12.8 - Absolute extrema on open and / or unbounded...Ch. 12.8 - Absolute extrema on open and / or unbounded...Ch. 12.8 - Absolute extrema on open and / or unbounded...Ch. 12.8 - Prob. 57ECh. 12.8 - Prob. 58ECh. 12.8 - Prob. 59ECh. 12.8 - Absolute extrema on open and / or unbounded...Ch. 12.8 - Explain why or why not Determine whether the...Ch. 12.8 - Prob. 62ECh. 12.8 - Extreme points from contour plots Based on the...Ch. 12.8 - Optimal box Find the dimensions of the rectangular...Ch. 12.8 - Lease distance What point on the plane x y + z =...Ch. 12.8 - Maximum/minimum of linear functions Let R be a...Ch. 12.8 - Magic triples Let x, y, and z be nonnegative...Ch. 12.8 - Powers and roots Assume that x + y + z = 1 with x ...Ch. 12.8 - Prob. 69ECh. 12.8 - Least squares approximation In its many guises,...Ch. 12.8 - Prob. 71ECh. 12.8 - Prob. 72ECh. 12.8 - Prob. 73ECh. 12.8 - Second Derivative Test Suppose the conditions of...Ch. 12.8 - Maximum area triangle Among all triangles with a...Ch. 12.8 - Ellipsoid inside a tetrahedron (1946 Putnam Exam)...Ch. 12.8 - Slicing plane Find an equation of the plane...Ch. 12.8 - Two mountains without a saddle Show that the...Ch. 12.8 - Solitary critical points A function of one...Ch. 12.9 - Explain why, at a point that maximizes or...Ch. 12.9 - Prob. 2ECh. 12.9 - Prob. 3ECh. 12.9 - Prob. 4ECh. 12.9 - Lagrange multipliers in two variables Use Lagrange...Ch. 12.9 - Lagrange multipliers in two variables Use Lagrange...Ch. 12.9 - Lagrange multipliers in two variables Use Lagrange...Ch. 12.9 - Lagrange multipliers in two variables Use Lagrange...Ch. 12.9 - Lagrange multipliers in two variables Use Lagrange...Ch. 12.9 - Lagrange multipliers in two variables Use Lagrange...Ch. 12.9 - Prob. 11ECh. 12.9 - Lagrange multipliers in two variables Use Lagrange...Ch. 12.9 - Prob. 13ECh. 12.9 - Lagrange multipliers in two variables Use Lagrange...Ch. 12.9 - Lagrange multipliers in three variables Use...Ch. 12.9 - Lagrange multipliers in three variables Use...Ch. 12.9 - Lagrange multipliers in three variables Use...Ch. 12.9 - Lagrange multipliers in three variables Use...Ch. 12.9 - Prob. 19ECh. 12.9 - Lagrange multipliers in three variables Use...Ch. 12.9 - Lagrange multipliers in three variables Use...Ch. 12.9 - Prob. 22ECh. 12.9 - Prob. 23ECh. 12.9 - Lagrange multipliers in three variables Use...Ch. 12.9 - Applications of Lagrange multipliers Use Lagrange...Ch. 12.9 - Prob. 26ECh. 12.9 - Prob. 27ECh. 12.9 - Prob. 28ECh. 12.9 - Prob. 29ECh. 12.9 - Prob. 30ECh. 12.9 - Prob. 31ECh. 12.9 - Prob. 32ECh. 12.9 - Prob. 33ECh. 12.9 - Applications of Lagrange multipliers Use Lagrange...Ch. 12.9 - Maximizing utility functions Find the values of l...Ch. 12.9 - Maximizing utility functions Find the values of l...Ch. 12.9 - Maximizing utility functions Find the values of l...Ch. 12.9 - Maximizing utility functions Find the values of l...Ch. 12.9 - Explain why or why not Determine whether the...Ch. 12.9 - Prob. 40ECh. 12.9 - Prob. 41ECh. 12.9 - Prob. 42ECh. 12.9 - Prob. 43ECh. 12.9 - Prob. 44ECh. 12.9 - Prob. 45ECh. 12.9 - Prob. 46ECh. 12.9 - Prob. 47ECh. 12.9 - Prob. 48ECh. 12.9 - Prob. 49ECh. 12.9 - Graphical Lagrange multipliers The following...Ch. 12.9 - Graphical Lagrange multipliers The following...Ch. 12.9 - Extreme points on flattened spheres The equation...Ch. 12.9 - Production functions Economists model the output...Ch. 12.9 - Production functions Economists model the output...Ch. 12.9 - Production functions Economists model the output...Ch. 12.9 - Temperature of an elliptical plate The temperature...Ch. 12.9 - Maximizing a sum 57.Find the maximum value of x1 +...Ch. 12.9 - Prob. 58ECh. 12.9 - Prob. 59ECh. 12.9 - Geometric and arithmetic means Given positive...Ch. 12.9 - Problems with two constraints Given a...Ch. 12.9 - Prob. 62ECh. 12.9 - Two-constraint problems Use the result of Exercise...Ch. 12.9 - Prob. 64ECh. 12.9 - Two-constraint problems Use the result of Exercise...Ch. 12 - Prob. 1RECh. 12 - Prob. 2RECh. 12 - Equations of planes Consider the plane passing...Ch. 12 - Intersecting planes Find an equation of the line...Ch. 12 - Intersecting planes Find an equation of the line...Ch. 12 - Prob. 6RECh. 12 - Equations of planes Find an equation of the...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Prob. 21RECh. 12 - Identifying surfaces Consider the surfaces defined...Ch. 12 - Prob. 23RECh. 12 - Prob. 24RECh. 12 - Prob. 25RECh. 12 - Prob. 26RECh. 12 - Prob. 27RECh. 12 - Level curves Make a sketch of several level curves...Ch. 12 - Prob. 29RECh. 12 - Matching level curves with surfaces Match level...Ch. 12 - Prob. 31RECh. 12 - Prob. 32RECh. 12 - Prob. 33RECh. 12 - Prob. 34RECh. 12 - Prob. 35RECh. 12 - Prob. 36RECh. 12 - Prob. 37RECh. 12 - Prob. 38RECh. 12 - Prob. 39RECh. 12 - Prob. 40RECh. 12 - Prob. 41RECh. 12 - Prob. 42RECh. 12 - Prob. 43RECh. 12 - Prob. 44RECh. 12 - Prob. 45RECh. 12 - Prob. 46RECh. 12 - Prob. 47RECh. 12 - Laplaces equation Verify that the following...Ch. 12 - Prob. 49RECh. 12 - Prob. 50RECh. 12 - Prob. 51RECh. 12 - Chain Rule Use the Chain Rule to evaluate the...Ch. 12 - Prob. 53RECh. 12 - Implicit differentiation Find dy/dx for the...Ch. 12 - Implicit differentiation Find dy/dx for the...Ch. 12 - Walking on a surface Consider the following...Ch. 12 - Walking on a surface Consider the following...Ch. 12 - Constant volume cones Suppose the radius of a...Ch. 12 - Directional derivatives Consider the function f(x,...Ch. 12 - Computing gradients Compute the gradient of the...Ch. 12 - Computing gradients Compute the gradient of the...Ch. 12 - Computing gradients Compute the gradient of the...Ch. 12 - Computing gradients Compute the gradient of the...Ch. 12 - Prob. 64RECh. 12 - Prob. 65RECh. 12 - Direction of steepest ascent and descent a.Find...Ch. 12 - Prob. 67RECh. 12 - Level curves Let f(x, y) = 8 2x2 y2. For the...Ch. 12 - Level curves Let f(x, y) = 8 2x2 y2. For the...Ch. 12 - Prob. 70RECh. 12 - Prob. 71RECh. 12 - Tangent planes Find an equation of the plane...Ch. 12 - Tangent planes Find an equation of the plane...Ch. 12 - Prob. 74RECh. 12 - Prob. 75RECh. 12 - Prob. 76RECh. 12 - Prob. 77RECh. 12 - Linear approximation a.Find the linear...Ch. 12 - Linear approximation a.Find the linear...Ch. 12 - Changes in a function Estimate the change in the...Ch. 12 - Volume of a cylinder The volume of a cylinder with...Ch. 12 - Volume of an ellipsoid The volume of an ellipsoid...Ch. 12 - Water-level changes A hemispherical tank with a...Ch. 12 - Prob. 84RECh. 12 - Analyzing critical points Identify the critical...Ch. 12 - Analyzing critical points Identify the critical...Ch. 12 - Analyzing critical points Identify the critical...Ch. 12 - Absolute maxima and minima Find the absolute...Ch. 12 - Absolute maxima and minima Find the absolute...Ch. 12 - Prob. 90RECh. 12 - Absolute maxima and minima Find the absolute...Ch. 12 - Prob. 92RECh. 12 - Lagrange multipliers Use Lagrange multipliers to...Ch. 12 - Prob. 94RECh. 12 - Lagrange multipliers Use Lagrange multipliers to...Ch. 12 - Lagrange multipliers Use Lagrange multipliers to...Ch. 12 - Maximum perimeter rectangle Use Lagrange...Ch. 12 - Minimum surface area cylinder Use Lagrange...Ch. 12 - Minimum distance to a cone Find the point(s) on...Ch. 12 - Prob. 100RE
Additional Math Textbook Solutions
Find more solutions based on key concepts
Binomial Probability Formula. In Exercises 13 and 14, answer the questions designed to help understand the rati...
Elementary Statistics (13th Edition)
Interpreting a P-Value In Exercises 3–8, the P-value for a hypothesis test is shown. Use the P-value to decide ...
Elementary Statistics: Picturing the World (7th Edition)
CHECK POINT I You deposit $1000 in a saving account at a bank that has a rate of 4%. a. Find the amount, A, of ...
Thinking Mathematically (6th Edition)
Voting A random sample of likely voters showed that 49 planned to support Measure X. The margin of error is 3 p...
Introductory Statistics
Motion in the Plane
In Exercises 5–8, r(t) is the position of a particle in the xy-plane at time t. Find an equ...
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Similar questions
- Use a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…arrow_forwardx²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.arrow_forwardSketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8arrow_forwardDetermine the following limit. lim 35w² +8w+4 w→∞ √49w+w³ 3 Select the correct choice below, and, if necessary, fill in the answer box to complete your choice. ○ A. lim W→∞ 35w² +8w+4 49w+w3 (Simplify your answer.) B. The limit does not exist and is neither ∞ nor - ∞.arrow_forwardCalculate the limit lim X-a x-a 5 using the following factorization formula where n is a positive integer and x-➡a a is a real number. x-a = (x-a) (x1+x-2a+x lim x-a X - a x-a 5 = n- + xa an-2 + an−1)arrow_forwardThe function s(t) represents the position of an object at time t moving along a line. Suppose s(1) = 116 and s(5)=228. Find the average velocity of the object over the interval of time [1,5]. The average velocity over the interval [1,5] is Vav = (Simplify your answer.)arrow_forwardFor the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1. Time Interval Average Velocity [1,2] Complete the following table. Time Interval Average Velocity [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] [1,2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] ப (Type exact answers. Type integers or decimals.) The value of the instantaneous velocity at t = 1 is (Round to the nearest integer as needed.)arrow_forwardFind the following limit or state that it does not exist. Assume b is a fixed real number. (x-b) 40 - 3x + 3b lim x-b x-b ... Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (x-b) 40 -3x+3b A. lim x-b x-b B. The limit does not exist. (Type an exact answer.)arrow_forwardx4 -289 Consider the function f(x) = 2 X-17 Complete parts a and b below. a. Analyze lim f(x) and lim f(x), and then identify the horizontal asymptotes. x+x X--∞ lim 4 X-289 2 X∞ X-17 X - 289 lim = 2 ... X∞ X - 17 Identify the horizontal asymptotes. Select the correct choice and, if necessary, fill in the answer box(es) to complete your choice. A. The function has a horizontal asymptote at y = B. The function has two horizontal asymptotes. The top asymptote is y = and the bottom asymptote is y = ☐ . C. The function has no horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote x = a, evaluate lim f(x) and lim f(x). Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. earrow_forwardExplain why lim x²-2x-35 X-7 X-7 lim (x+5), and then evaluate lim X-7 x² -2x-35 x-7 x-7 Choose the correct answer below. A. x²-2x-35 The limits lim X-7 X-7 and lim (x+5) equal the same number when evaluated using X-7 direct substitution. B. Since each limit approaches 7, it follows that the limits are equal. C. The numerator of the expression X-2x-35 X-7 simplifies to x + 5 for all x, so the limits are equal. D. Since x²-2x-35 X-7 = x + 5 whenever x 7, it follows that the two expressions evaluate to the same number as x approaches 7. Now evaluate the limit. x²-2x-35 lim X-7 X-7 = (Simplify your answer.)arrow_forwardA function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and x-6+ lim f(x)=-3, find the following limits. X-6 a. lim f(x) b. +9-←x lim f(x) X-6 a. lim f(x)= +9-←x (Simplify your answer.) b. lim f(x)= X→-6 (Simplify your answer.) ...arrow_forwardEvaluate the following limit. lim X-X (10+19) Select the correct answer below and, if necessary, fill in the answer box within your choice. 10 A. lim 10+ = 2 ☐ (Type an integer or a simplified fraction.) X-∞ B. The limit does not exist.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning