Focal chords A focal chord of a conic section is a line through a focus joining two points of the curve. The latus rectum is the focal chord perpendicular to the major axis of the conic. Prove the following properties. 91. Let L be the latus rectum of the parabola y 2 = 4 px , for p > 0. Let F be the focus of the parabola, P be any point on the parabola to the left of L , and D be the (shortest) distance between P and L. Show that for all P , D + | FP | is a constant. Find the constant.
Focal chords A focal chord of a conic section is a line through a focus joining two points of the curve. The latus rectum is the focal chord perpendicular to the major axis of the conic. Prove the following properties. 91. Let L be the latus rectum of the parabola y 2 = 4 px , for p > 0. Let F be the focus of the parabola, P be any point on the parabola to the left of L , and D be the (shortest) distance between P and L. Show that for all P , D + | FP | is a constant. Find the constant.
Solution Summary: The author explains that the value of the constant is 2p for the focal chord of a conic section.
Focal chordsA focal chord of a conic section is a line through a focus joining two points of the curve. The latus rectum is the focal chord perpendicular to the major axis of the conic. Prove the following properties.
91. Let L be the latus rectum of the parabola y2 = 4px, for p > 0. Let F be the focus of the parabola, P be any point on the parabola to the left of L, and D be the (shortest) distance between P and L. Show that for all P, D + |FP| is a constant. Find the constant.
Curve that is obtained by the intersection of the surface of a cone with a plane. The three types of conic sections are parabolas, ellipses, and hyperbolas. The main features of conic sections are focus, eccentricity, and directrix. The other parameters are principal axis, linear eccentricity, latus rectum, focal parameter, and major and minor axis.
2. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.015.
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.)
ASK YOUR TEACHER
3
1
3 +
dy, n = 6
(a) the Trapezoidal Rule
(b) the Midpoint Rule
(c) Simpson's Rule
Need Help? Read It
Watch It
This question builds on an earlier problem. The randomized numbers may have changed, but have your work for the previous problem available to help with this one.
A 4-centimeter rod is attached at one end to a point A rotating counterclockwise on a wheel of radius 2 cm. The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time t=0 the rod is situated as in the diagram at the left below. The
wheel rotates counterclockwise at 1.5 rev/sec. At some point, the rod will be tangent to the circle as shown in the third picture.
B
A
B
at some instant, the piston will be tangent to the circle
(a) Express the x and y coordinates of point A as functions of t:
x= 2 cos(3πt)
and y= 2 sin(3πt)
(b) Write a formula for the slope of the tangent line to the circle at the point A at time t seconds:
-cot (3πt)
(c) Express the x-coordinate of the right end of the rod at point B as a function of t: 2 cos(3πt) +41/1
(d) Express the slope of the rod…
4. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.024.
Find the approximations Tη, Mn, and S, to the integral
computer algebra system.)
ASK YOUR TEACHER
PRACTICE ANOTHER
4 39
√
dx for n = 6 and 12. Then compute the corresponding errors ET, EM, and Es. (Round your answers to six decimal places. You may wish to use the sum command on a
n
Tn
Mn
Sp
6
12
n
ET
EM
Es
6
12
What observations can you make? In particular, what happens to the errors when n is doubled?
As n is doubled, ET and EM are decreased by a factor of about
Need Help?
Read It
'
and Es is decreased by a factor of about
Chapter 12 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Finding The Focus and Directrix of a Parabola - Conic Sections; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=KYgmOTLbuqE;License: Standard YouTube License, CC-BY