
In Problems 1-22, use the Principle of Mathematical Induction to show that the given statement is true for all natural numbers .

To prove: The given statement is true for all natural numbers using the Principle of Mathematical Induction.
Answer to Problem 3AYU
As the statement is true for the natural number terms, hence the statement is true for all natural numbers.
Explanation of Solution
Given:
Statements says the series is true for all natural number.
Formula used:
The Principle of Mathematical Induction
Suppose that the following two conditions are satisfied with regard to a statement about natural numbers:
CONDITION I: The statement is true for the natural number 1.
CONDITION II: If the statement is true for some natural number , it is also true for the next natural number . Then the statement is true for all natural numbers.
Proof:
Consider the statement -----(1)
Step 1: Show that statement (1) is true for .
That is Hence the statement is true for natural number .
Step 2: Assume that the statement is true for some natural number k.
That is -----(1)
Step 3: Prove that the statement is true for the next natural number .
That is, to prove that
Consider
=
[Substituting equation (1)]
As the statement is true for the natural number terms, hence the statement is true for all natural numbers.
Chapter 12 Solutions
Precalculus
Additional Math Textbook Solutions
College Algebra (7th Edition)
Pre-Algebra Student Edition
Elementary Statistics (13th Edition)
Precalculus: Mathematics for Calculus (Standalone Book)
Calculus: Early Transcendentals (2nd Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- a -> f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem) Muslim_mathsarrow_forwardUse Green's Theorem to evaluate F. dr, where F = (√+4y, 2x + √√) and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to (0,0).arrow_forwardEvaluate F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line π 1 1 segment starting at the point (8, ' and ending at the point (3, 2 3'6arrow_forward
- I need help in ensuring that I explain it propleryy in the simplifest way as possiblearrow_forwardI need help making sure that I explain this part accutartly.arrow_forwardPlease help me with this question as I want to know how can I perform the partial fraction decompostion on this alebgric equation to find the time-domain of y(t)arrow_forward
- Please help me with this question as I want to know how can I perform the partial fraction on this alebgric equation to find the time-domain of y(t)arrow_forwardEvaluate F³ - dr where ♬ = (4z, -4y, x), and C' is given by (t) = (sin(t), t, cos(t)), 0≤t≤ñ .arrow_forwardMid-Term Review Find the formula for (f + g)(x). f(x) = x² - 10x + 25 and g(x) = x² - 10x + 24 (f + g) (x) = [ 2 ]x² X + DELL Skip Sarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





