
In Problems 1-22, use the Principle of Mathematical Induction to show that the given statement is true for all natural numbers .
is divisible by 3.

To prove: The given statement is divisible by 3 is true for all natural numbers using the Principle of Mathematical Induction.
Answer to Problem 20AYU
As the statement is true for the natural number terms, hence the statement is true for all natural numbers.
Explanation of Solution
Given:
Statements says the series is divisible by 3 is true for all natural number.
Formula used:
The Principle of Mathematical Induction
Suppose that the following two conditions are satisfied with regard to a statement about natural numbers:
CONDITION I: The statement is true for the natural number 1.
CONDITION II: If the statement is true for some natural number , it is also true for the next natural number . Then the statement is true for all natural numbers.
Proof:
Consider the statement
is divisible by 3 -----(1)
Step 1: Show that statement (1) is true for the natural number .
That is is divisible by 3. Hence the statement is true for the natural number .
Step 2: Assume that the statement is true for some natural number .
That is is divisible by 3 -----(1)
Step 3: Prove that the statement is true for the next natural number .
That is, to prove that is divisible by 3
Consider
From equation (1), first term in the above equation is divisible by 3 and second term is a multiple of 3.
Hence is divisible by 2.
As the statement is true for the natural number terms, hence the statement is true for all natural numbers.
Chapter 12 Solutions
Precalculus
Additional Math Textbook Solutions
Elementary Statistics (13th Edition)
Algebra and Trigonometry (6th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Calculus: Early Transcendentals (2nd Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
- A 20 foot ladder rests on level ground; its head (top) is against a vertical wall. The bottom of the ladder begins by being 12 feet from the wall but begins moving away at the rate of 0.1 feet per second. At what rate is the top of the ladder slipping down the wall? You may use a calculator.arrow_forwardExplain the focus and reasons for establishment of 12.4.1(root test) and 12.4.2(ratio test)arrow_forwarduse Integration by Parts to derive 12.6.1arrow_forward
- Explain the relationship between 12.3.6, (case A of 12.3.6) and 12.3.7arrow_forwardExplain the key points and reasons for the establishment of 12.3.2(integral Test)arrow_forwardUse 12.4.2 to determine whether the infinite series on the right side of equation 12.6.5, 12.6.6 and 12.6.7 converges for every real number x.arrow_forward
- use Corollary 12.6.2 and 12.6.3 to derive 12.6.4,12.6.5, 12.6.6 and 12.6.7arrow_forwardExplain the focus and reasons for establishment of 12.5.1(lim(n->infinite) and sigma of k=0 to n)arrow_forwardExplain the focus and reasons for establishment of 12.5.3 about alternating series. and explain the reason why (sigma k=1 to infinite)(-1)k+1/k = 1/1 - 1/2 + 1/3 - 1/4 + .... converges.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





