MML PRECALCULUS ENHANCED
7th Edition
ISBN: 9780134119250
Author: Sullivan
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.4, Problem 2SB
In Problems 1-22, use the Principle of Mathematical Induction to show that the given statement is true for all natural numbers .
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Total marks 15
4.
:
Let f R2 R be defined by
f(x1, x2) = 2x²- 8x1x2+4x+2.
Find all local minima of f on R².
[10 Marks]
(ii) Give an example of a function f R2 R which is neither
bounded below nor bounded above, and has no critical point. Justify
briefly your answer.
[5 Marks]
4.
Let F RNR be a mapping.
(i)
x ЄRN ?
(ii)
:
What does it mean to say that F is differentiable at a point
[1 Mark]
In Theorem 5.4 in the Lecture Notes we proved that if F
is differentiable at a point x E RN then F is continuous at x.
Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We
want to show that F(xn) F(x), which means F is continuous at x.
Denote hnxn - x, so that ||hn|| 0. Thus we find
||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) ||
(**)
||DF(x)hn||+||R(hn)||| → 0,
because the linear mapping DF(x) is continuous and for all large nЄ N,
(***) ||R(hn) ||
||R(hn) || ≤
→ 0.
||hn||
(a)
Explain in details why ||hn|| → 0.
[3 Marks]
(b)
Explain the steps labelled (*), (**), (***).
[6 Marks]
4.
In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm
is differentiable at x = RN then F is continuous at x.
Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want
F(x), which means F is continuous at x.
to show that F(xn)
Denote hn
xnx, so that ||hn||| 0. Thus we find
||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)||
(**)
||DF(x)hn|| + ||R(hn) || → 0,
because the linear mapping DF(x) is continuous and for all large n = N,
|||R(hn) || ≤
(***) ||R(hn)||
||hn||
→ 0.
Explain the steps labelled (*), (**), (***)
[6 Marks]
(ii)
Give an example of a function F: RR such that F is contin-
Total marks 10
uous at x=0 but F is not differentiable at at x = 0.
[4 Marks]
Chapter 12 Solutions
MML PRECALCULUS ENHANCED
Ch. 12.1 - For the function f( x )= x1 x , find f( 2 ) and f(...Ch. 12.1 - True or False A function is a relation between two...Ch. 12.1 - If 1000 is invested at 4 per annum compounded...Ch. 12.1 - How much do you need to invest now at 5 per annum...Ch. 12.1 - Prob. 5AYPCh. 12.1 - True or False The notation a 5 represents the...Ch. 12.1 - If n0 is an integer, then n!= ________ When n2 .Ch. 12.1 - The sequence a 1 =5 , a n =3 a n1 is an example of...Ch. 12.1 - The notation a 1 + a 2 + a 3 ++ a n = k=1 n a k...Ch. 12.1 - k=1 n k=1+2+3++n = ______. (a) n! (b) n( n+1 ) 2...
Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 11-16, evaluate each factorial...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 17-28, write down the first five terms...Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 29-36, the given pattern continues....Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 37-50, a sequence is defined...Ch. 12.1 - In Problems 51-60, write out each sum. k=1 n (...Ch. 12.1 - In Problems 51-60, write out each sum. k=1 n (...Ch. 12.1 - In Problems 51-60, write out each sum. k=1 n k 2...Ch. 12.1 - In Problems 51-60, write out each sum. k=1 n (...Ch. 12.1 - In Problems 51-60, write out each sum. k=0 n 1 3...Ch. 12.1 - In Problems 51-60, write out each sum. k=0 n ( 3...Ch. 12.1 - In Problems 51-60, write out each sum. k=0 n1 1 3...Ch. 12.1 - In Problems 51-60, write out each sum. k=0 n1 (...Ch. 12.1 - In Problems 51-60, write out each sum. k=2 n ( 1...Ch. 12.1 - In Problems 51-60, write out each sum. k=3 n ( 1...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 61-70, express each sum using...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - In Problems 71-82, find the sum of each sequence. ...Ch. 12.1 - If 2500 is invested at 3 compounded monthly, find...Ch. 12.1 - Write the complex number 1i in polar form. Express...Ch. 12.1 - For v=2ij and w=i+2j , find the dot product vw .Ch. 12.1 - Find an equation of the parabola with vertex ( 3,4...Ch. 12.2 - In a(n) _________ sequence, the difference between...Ch. 12.2 - True or False For an arithmetic sequence { a n }...Ch. 12.2 - If the 5th term of an arithmetic sequence is 12...Ch. 12.2 - True or False The sum S n of the first n terms of...Ch. 12.2 - An arithmetic sequence can always be expressed as...Ch. 12.2 - If a n =2n+7 is the n th term of an arithmetic...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 7-16, show that each sequence is...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 17-24, find the nth term of the...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 25-30, find the indicated term in each...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 31-38, find the first term and the...Ch. 12.2 - In Problems 39-56, find each sum. 1+3+5++( 2n1 )Ch. 12.2 - In Problems 39-56, find each sum. 2+4+6++2nCh. 12.2 - In Problems 39-56, find each sum. 7+12+17++( 2+5n...Ch. 12.2 - In Problems 39-56, find each sum. 1+3+7++( 4n5 )Ch. 12.2 - In Problems 39-56, find each sum. 2+4+6++70Ch. 12.2 - In Problems 39-56, find each sum. 1+3+5++59Ch. 12.2 - In Problems 39-56, find each sum. 5+9+13++49Ch. 12.2 - In Problems 39-56, find each sum. 2+5+8++41Ch. 12.2 - In Problems 39-56, find each sum. 73+78+83+88++558Ch. 12.2 - In Problems 39-56, find each sum. 7+1511299Ch. 12.2 - In Problems 39-56, find each sum. 4+4.5+5+5.5++100Ch. 12.2 - In Problems 39-56, find each sum. 8+8 1 4 +8 1 2...Ch. 12.2 - In Problems 39-56, find each sum. n=1 80 ( 2n5 )Ch. 12.2 - In Problems 39-56, find each sum. n=1 90 ( 32n )Ch. 12.2 - In Problems 39-56, find each sum. n=1 100 ( 6 1 2...Ch. 12.2 - In Problems 39-56, find each sum. n=1 80 ( 1 3 n+...Ch. 12.2 - In Problems 39-56, find each sum. The sum of the...Ch. 12.2 - In Problems 39-56, find each sum. The sum of the...Ch. 12.2 - Find x so that x+3,2x+1,and5x+2 are consecutive...Ch. 12.2 - Find x so that 2x,3x+2,and5x+3 are consecutive...Ch. 12.2 - How many terms must be added in an arithmetic...Ch. 12.2 - How many terms must be added in an arithmetic...Ch. 12.2 - Drury Lane Theater The Drury Lane Theater has 25...Ch. 12.2 - Football Stadium The corner section of a football...Ch. 12.2 - Creating a Mosaic A mosaic is designed in the...Ch. 12.2 - Constructing a Brick Staircase A brick staircase...Ch. 12.2 - Cooling Air As a parcel of air rises (for example,...Ch. 12.2 - Prob. 66AECh. 12.2 - Seats in an Amphitheater An outdoor amphitheater...Ch. 12.2 - Stadium Construction How many rows are in the...Ch. 12.2 - Salary If you take a job with a starting salary of...Ch. 12.2 - Make up an arithmetic sequence. Give it to a...Ch. 12.2 - Describe the similarities and differences between...Ch. 12.2 - Problems 72-75 are based on material learned...Ch. 12.2 - Prob. 73RYKCh. 12.2 - Prob. 74RYKCh. 12.2 - Problems 72-75 are based on material learned...Ch. 12.3 - The formula for the n th term of a geometric...Ch. 12.3 - Prob. 2CVCh. 12.3 - Prob. 3CVCh. 12.3 - Prob. 4CVCh. 12.3 - Prob. 5CVCh. 12.3 - Prob. 6CVCh. 12.3 - Prob. 7CVCh. 12.3 - Prob. 8CVCh. 12.3 - Prob. 9SBCh. 12.3 - Prob. 10SBCh. 12.3 - Prob. 11SBCh. 12.3 - Prob. 12SBCh. 12.3 - Prob. 13SBCh. 12.3 - Prob. 14SBCh. 12.3 - Prob. 15SBCh. 12.3 - Prob. 16SBCh. 12.3 - Prob. 17SBCh. 12.3 - Prob. 18SBCh. 12.3 - Prob. 19SBCh. 12.3 - In Problems 19-26, find the fifth term and the n...Ch. 12.3 - Prob. 21SBCh. 12.3 - Prob. 22SBCh. 12.3 - Prob. 23SBCh. 12.3 - Prob. 24SBCh. 12.3 - Prob. 25SBCh. 12.3 - Prob. 26SBCh. 12.3 - Prob. 27SBCh. 12.3 - Prob. 28SBCh. 12.3 - Prob. 29SBCh. 12.3 - Prob. 30SBCh. 12.3 - Prob. 31SBCh. 12.3 - Prob. 32SBCh. 12.3 - Prob. 33SBCh. 12.3 - Prob. 34SBCh. 12.3 - Prob. 35SBCh. 12.3 - Prob. 36SBCh. 12.3 - Prob. 37SBCh. 12.3 - Prob. 38SBCh. 12.3 - Prob. 39SBCh. 12.3 - Prob. 40SBCh. 12.3 - In problems 41-46, find each sum. 1 4 + 2 4 + 2 2...Ch. 12.3 - Prob. 42SBCh. 12.3 - In problems 41-46, find each sum. k=1 n ( 2 3 ) kCh. 12.3 - In problems 41-46, find each sum. k=1 n 4 3 k1Ch. 12.3 - Prob. 45SBCh. 12.3 - Prob. 46SBCh. 12.3 - Prob. 47SBCh. 12.3 - Prob. 48SBCh. 12.3 - Prob. 49SBCh. 12.3 - Prob. 50SBCh. 12.3 - Prob. 51SBCh. 12.3 - For Problems 47-52, use a graphing utility to find...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - Prob. 56SBCh. 12.3 - Prob. 57SBCh. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - Prob. 60SBCh. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - Prob. 63SBCh. 12.3 - Prob. 64SBCh. 12.3 - Prob. 65SBCh. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - In Problems 53-68, determine whether each infinite...Ch. 12.3 - Prob. 69MPCh. 12.3 - Prob. 70MPCh. 12.3 - Prob. 71MPCh. 12.3 - Prob. 72MPCh. 12.3 - In Problems 69-82, determine whether the given...Ch. 12.3 - Prob. 74MPCh. 12.3 - Prob. 75MPCh. 12.3 - Prob. 76MPCh. 12.3 - Prob. 77MPCh. 12.3 - Prob. 78MPCh. 12.3 - Prob. 79MPCh. 12.3 - Prob. 80MPCh. 12.3 - Prob. 81MPCh. 12.3 - Prob. 82MPCh. 12.3 - Prob. 83AECh. 12.3 - Prob. 84AECh. 12.3 - Salary Increases If you have been hired at an...Ch. 12.3 - Prob. 86AECh. 12.3 - Pendulum Swings Initially, a pendulum swings...Ch. 12.3 - Bouncing Balls A ball is dropped from a height of...Ch. 12.3 - Retirement Christine contributes 100 each month to...Ch. 12.3 - Saving for a Home Jolene wants to purchase a new...Ch. 12.3 - Tax-Sheltered Annuity Don contributes 500 at the...Ch. 12.3 - Retirement Ray contributes 1000 to an individual...Ch. 12.3 - Sinking Fund Scott and Alice want to purchase a...Ch. 12.3 - Prob. 94AECh. 12.3 - Prob. 95AECh. 12.3 - Prob. 96AECh. 12.3 - Prob. 97AECh. 12.3 - Multiplier Refer to Problem 97. Suppose that the...Ch. 12.3 - Prob. 99AECh. 12.3 - Stock Price Refer to Problem 99. Suppose that a...Ch. 12.3 - Prob. 101AECh. 12.3 - Show that the Amount of an Annuity formula that...Ch. 12.3 - Critical Thinking You are interviewing for a job...Ch. 12.3 - Prob. 104DWCh. 12.3 - Prob. 105DWCh. 12.3 - Prob. 106DWCh. 12.3 - Prob. 107DWCh. 12.3 - Prob. 108DWCh. 12.3 - Prob. 109DWCh. 12.3 - Describe the similarities and differences between...Ch. 12.3 - Use the ChangeofBase Formula and a calculator to...Ch. 12.3 - Prob. 113RYKCh. 12.3 - Prob. 114RYKCh. 12.3 - Prob. 115RYKCh. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 1-22, use the Principle of...Ch. 12.4 - In Problems 23-27, prove each statement. If x1 ,...Ch. 12.4 - In Problems 23-27, prove each statement. If 0x1 ,...Ch. 12.4 - In Problems 23-27, prove each statement. ab is a...Ch. 12.4 - In Problems 23-27, prove each statement. a+b is a...Ch. 12.4 - In Problems 23-27, prove each statement. ( 1+a ) n...Ch. 12.4 - Show that the statement n 2 n+41 is a prime...Ch. 12.4 - Show that the formula 2+4+6++2n= n 2 +n+2 obeys...Ch. 12.4 - Use mathematical induction to prove that if r1 ,...Ch. 12.4 - Use mathematical induction to prove that a+( a+d...Ch. 12.4 - Extended Principle of Mathematical Induction The...Ch. 12.4 - Geometry Use the Extended Principle of...Ch. 12.4 - How would you explain the Principle of...Ch. 12.4 - Solve: log 2 x+5 =4Ch. 12.4 - A mass of 500 kg is suspended from two cables, as...Ch. 12.4 - Solve the system: { 4x+3y=7 2x5y=16Ch. 12.4 - For A=[ 1 2 1 0 1 4 ]andB=[ 3 1 1 0 2 2 ] , find...Ch. 12.5 - The ______ ______ is a triangular display of the...Ch. 12.5 - ( n 0 )=and( n 1 )= .Ch. 12.5 - True or False ( n j )= j! ( nj )!n!Ch. 12.5 - The ______ ________ can be used to expand...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 5 3...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 7 3...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 7 5...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 9 7...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 50...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 100...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 1000...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 1000...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 55...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 60...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 47...Ch. 12.5 - In Problems 5-16, evaluate each expression. ( 37...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 17-28, expand each expression using...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - In Problems 29-42, use the Binomial Theorem to...Ch. 12.5 - Use the Binomial Theorem to find the numerical...Ch. 12.5 - Use the Binomial Theorem to find the numerical...Ch. 12.5 - Show that ( n n1 )=nand( n n )=1 .Ch. 12.5 - Show that if n and j arc integers with 0jn , then,...Ch. 12.5 - If n is a positive integer, show that, ( n 0 )+( n...Ch. 12.5 - If n is a positive integer, show that ( n 0 )( n 1...Ch. 12.5 - ( 5 0 ) ( 1 4 ) 5 +( 5 1 ) ( 1 4 ) 4 ( 3 4 )+( 5 2...Ch. 12.5 - Stirling’s Formula An approximation for n! ,...Ch. 12.5 - Solve 6 x = 5 x+1 . Express the answer both in...Ch. 12.5 - For v=2i+3jandw=3i2j (a) Find the dot product vw...Ch. 12.5 - Solve the system of equations: { xyz=0 2x+y+3z=1...Ch. 12.5 - Graph the system of inequalities. Tell whether the...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Rolles Theorem Determine whether Rolles Theorem applies to the following functions on the given interval. If so...
Calculus: Early Transcendentals (2nd Edition)
Standard Normal Distribution. In Exercises 17–36, assume that a randomly selected subject is given a bone densi...
Elementary Statistics (13th Edition)
No of more outfits can Marcus make if he buys green shirts.
Pre-Algebra Student Edition
CHECK POINT I Let p and q represent the following statements: p : 3 + 5 = 8 q : 2 × 7 = 20. Determine the truth...
Thinking Mathematically (6th Edition)
The table by using the given graph of h.
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Stating the Null and Alternative Hypotheses In Exercises 25–30, write the claim as a mathematical statement. St...
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 3. Let f R2 R be a function. (i) Explain in your own words the relationship between the existence of all partial derivatives of f and differentiability of f at a point x = R². (ii) Consider R2 → R defined by : [5 Marks] f(x1, x2) = |2x1x2|1/2 Show that af af -(0,0) = 0 and -(0, 0) = 0, Jx1 მx2 but f is not differentiable at (0,0). [10 Marks]arrow_forward(1) Write the following quadratic equation in terms of the vertex coordinates.arrow_forwardThe final answer is 8/π(sinx) + 8/3π(sin 3x)+ 8/5π(sin5x)....arrow_forward
- Keity x२ 1. (i) Identify which of the following subsets of R2 are open and which are not. (a) A = (2,4) x (1, 2), (b) B = (2,4) x {1,2}, (c) C = (2,4) x R. Provide a sketch and a brief explanation to each of your answers. [6 Marks] (ii) Give an example of a bounded set in R2 which is not open. [2 Marks] (iii) Give an example of an open set in R2 which is not bounded. [2 Marksarrow_forward2. (i) Which of the following statements are true? Construct coun- terexamples for those that are false. (a) sequence. Every bounded sequence (x(n)) nEN C RN has a convergent sub- (b) (c) (d) Every sequence (x(n)) nEN C RN has a convergent subsequence. Every convergent sequence (x(n)) nEN C RN is bounded. Every bounded sequence (x(n)) EN CRN converges. nЄN (e) If a sequence (xn)nEN C RN has a convergent subsequence, then (xn)nEN is convergent. [10 Marks] (ii) Give an example of a sequence (x(n))nEN CR2 which is located on the parabola x2 = x², contains infinitely many different points and converges to the limit x = (2,4). [5 Marks]arrow_forward2. (i) What does it mean to say that a sequence (x(n)) nEN CR2 converges to the limit x E R²? [1 Mark] (ii) Prove that if a set ECR2 is closed then every convergent sequence (x(n))nen in E has its limit in E, that is (x(n)) CE and x() x x = E. [5 Marks] (iii) which is located on the parabola x2 = = x x4, contains a subsequence that Give an example of an unbounded sequence (r(n)) nEN CR2 (2, 16) and such that x(i) converges to the limit x = (2, 16) and such that x(i) # x() for any i j. [4 Marksarrow_forward
- 1. (i) which are not. Identify which of the following subsets of R2 are open and (a) A = (1, 3) x (1,2) (b) B = (1,3) x {1,2} (c) C = AUB (ii) Provide a sketch and a brief explanation to each of your answers. [6 Marks] Give an example of a bounded set in R2 which is not open. (iii) [2 Marks] Give an example of an open set in R2 which is not bounded. [2 Marks]arrow_forward2. if limit. Recall that a sequence (x(n)) CR2 converges to the limit x = R² lim ||x(n)x|| = 0. 818 - (i) Prove that a convergent sequence (x(n)) has at most one [4 Marks] (ii) Give an example of a bounded sequence (x(n)) CR2 that has no limit and has accumulation points (1, 0) and (0, 1) [3 Marks] (iii) Give an example of a sequence (x(n))neN CR2 which is located on the hyperbola x2 1/x1, contains infinitely many different Total marks 10 points and converges to the limit x = (2, 1/2). [3 Marks]arrow_forward3. (i) Consider a mapping F: RN Rm. Explain in your own words the relationship between the existence of all partial derivatives of F and dif- ferentiability of F at a point x = RN. (ii) [3 Marks] Calculate the gradient of the following function f: R2 → R, f(x) = ||x||3, Total marks 10 where ||x|| = √√√x² + x/2. [7 Marks]arrow_forward
- 1. (i) (ii) which are not. What does it mean to say that a set ECR2 is closed? [1 Mark] Identify which of the following subsets of R2 are closed and (a) A = [-1, 1] × (1, 3) (b) B = [-1, 1] x {1,3} (c) C = {(1/n², 1/n2) ER2 | n EN} Provide a sketch and a brief explanation to each of your answers. [6 Marks] (iii) Give an example of a closed set which does not have interior points. [3 Marks]arrow_forwardA company specializing in lubrication products for vintage motors produce two blended oils, Smaza and Nefkov. They make a profit of K5,000.00 per litre of Smaza and K4,000.00 per litre of Nefkov. A litre of Smaza requires 0.4 litres of heavy oil and 0.6 litres of light oil. A litre of Nefkov requires 0.8 litres of heavy oil and 0.2 litres of light oil. The company has 100 litres of heavy oil and 80 litres of light oil. How many litres of each product should they make to maximize profits and what level of profit will they obtain? Show all your workings.arrow_forward1. Show that the vector field F(x, y, z) = (2x sin ye³)ix² cos yj + (3xe³ +5)k satisfies the necessary conditions for a conservative vector field, and find a potential function for F.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY