
(a)
To find:
The sum of squared errors, SSE.

Answer to Problem 9E
Solution:
The equation of the least squares regression line is
Squared error (SSE) is
Explanation of Solution
Given Information:
The numbers of parking tickets students received during one semester and their monthly
Parking Tickets and Monthly Income | ||||||||||
Number of Tickets, ![]() |
10 | 8 | 3 | 2 | 0 | 5 | 4 | 2 | 1 | 0 |
Monthly Income (in Dollars), ![]() |
4000 | 3800 | 1500 | 2000 | 870 | 2500 | 1800 | 1200 | 1400 |
The least Squares regression line is the line for which the average variation from the data is the smallest, also called the line of best fit, given by
Where is the slope of the least-squares regression line for paired data from a sample and
is the
-intercept for the regression line.
The sum of squared errors (SSE) for a regression line is the sum of the squares of the residuals.
Formula used:
The equation of least-squares regression line is given by
Where, is the slope of the least-squares regression line given as,
intercept given as,
Here n is the number of data pairs in the sample, is the
value of the explanatory variable and
is the
value of response variable.
The sum of squared errors (SSE) for a regression line is the sum of the squares of the residuals is given by,
Here is the
observed value of the response variable and
is the predicted variable of
using the list square regression model.
Calculation:
The table of the numbers of parking tickets students received during one semester and
their monthly Incomes is given by,
Number of Tickets, |
Monthly Income (in Dollars), |
|||
10 | 4000 | 40000 | 100 | 16000000 |
8 | 3800 | 30400 | 64 | 14440000 |
3 | 1500 | 4500 | 9 | 2250000 |
2 | 2000 | 4000 | 4 | 4000000 |
0 | 870 | 0 | 0 | 756900 |
5 | 2500 | 12500 | 25 | 6250000 |
4 | 1800 | 7200 | 16 | 3240000 |
2 | 1000 | 2000 | 4 | 1000000 |
1 | 1200 | 1200 | 1 | 1440000 |
0 | 1400 | 0 | 0 | 1960000 |
Where,
Substitute 10 for, 8 for
, 3 for
… 0 for
in the above equation,
Substitute for
,
for
,
for
…
for
in the above equation,
In order to calculate the value of and 4000 for
in
Proceed in the same manner to calculate
In order to calculate the value of, substitute 10 for
in
.
Proceed in the same manner to calculate for the rest of the data and refer table for the rest of the
values calculated.
In order to calculate the value of substitute 4000 for
in
.
Proceed in the same manner to calculate for the rest of the data and refer table for the rest of the
values calculated.
The slope of the least-squares regression line is given as,
Substitute 35 for in the above equation of
,
The -intercept of regression line is given as,
Substitute 35 for
The equation of least-squares regression line is,
The table of the numbers of parking tickets students received during one semester and
their monthly incomes is given by,
Number of Tickets, |
Monthly Income (in Dollars), |
Predicted value, |
Residual, |
Squared error, |
10 | 4000 | 4047.87 | -47.87 | 2291.5369 |
8 | 3800 | 3419.91 | 380.09 | 144468.4081 |
3 | 1500 | 1850.01 | -350.01 | 122507.0001 |
2 | 2000 | 1536.03 | 463.97 | 215268.1609 |
0 | 870 | 908.07 | -38.07 | 1449.3249 |
5 | 2500 | 2477.97 | 22.03 | 485.3209 |
4 | 1800 | 2163.99 | -363.99 | 132488.7201 |
2 | 1000 | 1536.03 | -536.03 | 287328.1609 |
1 | 1200 | 1222.05 | -22.05 | 486.2025 |
0 | 1400 | 908.07 | 491.93 | 241995.1249 |
The predicted values are obtained by substituting the values of
in the fitted regression line,
For, substitute 10 for
in the above equation,
Similarly the other values of are obtained and are shown in the third column of the table:
The residuals and
.
Substitute 4000 for and 4047.87 for
in above equation,
Similarly the other values of
The squared errors are obtained as,
Substitute for
in
Thus,
Similarly the other values of
The sum of squared errors (SSE) for a regression line is,
From the above table SSE is given by,
Thus, the sum of squared error (SSE) is 114767.96.
Conclusion:
The equation of least-squares regression line is,
The sum of squared errors (SSE) is 1148767.96.
(b)
To find:
The Standard error of estimate, .

Answer to Problem 9E
Solution:
The Standard error of estimate is 378.94.
Explanation of Solution
Given Information:
The numbers of parking tickets students received during one semester and their monthly
Parking Tickets and Monthly Income | ||||||||||
Number of Tickets, ![]() |
10 | 8 | 3 | 2 | 0 | 5 | 4 | 2 | 1 | 0 |
Monthly Income (in Dollars), ![]() |
4000 | 3800 | 1500 | 2000 | 870 | 2500 | 1800 | 1000 | 1200 | 1400 |
Incomes is,
Formula used:
The standard error of estimate is a measure of the deviation of the sample data points from the regression line and is given by:
Here SSE is the sum of squared error and is the number of paired data set in the sample,
is the
observed value of the response variable,
is the predicted variable of
using the list square regression model.
Calculation:
The formula of Standard error of estimate is,
From part a substitute for SSE and
for
in the above equation of Standard error of estimate.
Conclusion:
Thus, the Standard error of estimate is 378.94.
(c)
To Construct:
A 95% prediction interval for the given value of explanatory variable, .

Answer to Problem 9E
Solution:
The prediction interval is (2032.14, 3551.76).
Explanation of Solution
The prediction interval is a confidence interval for an individual value of the response
Variable y, at a given fixed value of the explanatory variable, x.
Formula used:
The formula to calculate the margin of error of a prediction interval for an individual value of the response variable, y, is given by,
n is the number of data pairs in the sample.
The formula to calculate the Prediction interval is given by,
or
Where
margin of error
The formula to calculate arithmetic mean is given by,
Where
Variables.
Calculation:
Arithmetic Mean is given as,
From part a substitute 10 for, 10 for
, 8 for
…..0 for
in the above equation of arithmetic mean,
Since the level of confidence is 95%,
Then using the t-distribution table, the critical value for this test
For -distribution with 8 degrees of freedom,
The formula to calculate the margin of error of a prediction interval is,
Substitute 1.86 for, 3.5 for
, 10 for
, 35 for
, 223 for
, 6 for
and
for
in the above equation of margin of error,
Predicted value for
is
The prediction interval is:
Substitute 2791.95for and 759.81 for
in the above formula,
The prediction interval is
Conclusion:
Thus, the prediction interval is
(d)
To Construct:
A 95% confidence interval for the intercept of regression line.

Answer to Problem 9E
Solution:
The 95% confidence interval for the intercept
is (496.45, 1319.69).
Explanation of Solution
Given Information:
The numbers of parking tickets students received during one semester and their monthly
Incomes is,
Parking Tickets and Monthly Income | ||||||||||
Number of Tickets, x | 10 | 8 | 3 | 2 | 0 | 5 | 4 | 2 | 1 | 0 |
Monthly Income | 4000 | 3800 | 1500 | 2000 | 870 | 2500 | 1800 | 1000 | 1200 | 1400 |
(in Dollars), y |
Calculation:
To generate the regression table in excel follow the given steps:
1. Under data tab, choose data analytics and then select regression.
2. Select the input Y and select the input X range and enter the range of the given
data.
3.Choose 95% confidence interval and click OK.
The following table will appear.
SUMMARY OUTPUT
Regression Statistics | |||||
Multiple R | 0.94662523 | ||||
R Square | 0.89609937 | ||||
Adjusted R Square | 0.88311172 | ||||
Standard Error | 378.940622 | ||||
Observations | 10 | ||||
ANOVA |
|||||
df | SS | MS | F | Significance F | |
Regression | 1 | 9907642.04 | 9907642 | 68.99665 | 3.32835E-05 |
Residual | 8 | 1148767.96 | 143596 | ||
Total | 9 | 11056410 |
Coefficients | Standard Error | t Stat | P-value | Lower 95.0% | Upper 95.0% | |
Intercept | 908.0696517 | 178.5009634 | 5.087197 | 0.000945 | 496.4456924 | 1319.69361 |
X | 313.9800995 | 37.79968083 | 8.306422 | 3.33E-05 | 226.8138793 | 401.14632 |
From the above result,
1. Multiple R is the absolute value of the .
2.
3. Standard Error is the standard error of the estimate, .
4. The intersection of the Residual row and the SS column is the sum of squared errors, SSE.
5. The Lower 95.0% and the Upper 95.0% columns give the lower and upper endpoints of the 95% confidence intervals for the intercept and slope.
6. The coefficient columns gives the values for the coefficients, that is, the
intercept and slope, of the regression line.
The row labeled Intercept is the row for the values corresponding to the intercept. The last two values in this row are the lower and upper endpoints for a 95% confidence for the
intercept of the regression line,
Thus, the 95% confidence interval for
Confidence Interval=(496.45, 1319.69).
Conclusion:
Thus, the 95% confidence interval for the intercept
is(496.45, 1319.69).
(e)
To Construct:
A 95% confidence interval for the slope of regression line.

Answer to Problem 9E
Solution:
Thus, the 95% confidence interval for the slope
Explanation of Solution
Given Information:
The numbers of parking tickets students received during one semester and their monthly
Incomes is,
Parking Tickets and Monthly Income | ||||||||||
Number of Tickets, x | 10 | 8 | 3 | 2 | 0 | 5 | 4 | 2 | 1 | 0 |
Monthly Income | 4000 | 3800 | 1500 | 2000 | 870 | 2500 | 1800 | 1000 | 1200 | 1400 |
(in Dollars), y |
Calculation:
To generate the regression table in excel follow the given steps:
1. Under data tab, choose data analytics and then select regression.
2. Select the input Y range and enter the range of the given and select the input X range and enter the range of the given
data.
3.Choose 95% confidence interval and click OK.
The following table will appear.
SUMMARY OUTPUT
Regression Statistics | ||||||
Multiple R | 0.946625253 | |||||
R Square | 0.89609937 | |||||
Adjusted R Square | 0.883111792 | |||||
Standard Error | 378.940622 | |||||
Observations | 10 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 9907642.04 | 9907642 | 68.99665 | 3.32835E-05 | |
Residual | 8 | 1148767.96 | 143596 | |||
Total | 9 | 11056410 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95.0% | Upper 95.0% | |
Intercept | 908.0696517 | 178.5009634 | 5.087197 | 0.000945 | 496.4456924 | 1319.69361 |
X | 313.9800995 | 37.79968083 | 8.306422 | 3.33E-05 | 226.8138793 | 401.14632 |
From the above result,
1. Multiple R is the absolute value of the .
2.
3. Standard Error is the standard error of the estimate, .
4. The intersection of the Residual row and the SS column is the sum of squared errors, SSE.
5. The Lower 95.0% and the Upper 95.0% columns give the lower and upper endpoints of the 95% confidence intervals for the intercept and slope.
6. The coefficient columns gives the values for the coefficients, that is, the
intercept and slope, of the regression line.
The row labeled is the row for the values corresponding to the slope of regression line. The last two values in this row are the lower and upper endpoints for a 95% confidence for the slope of the regression line,
Thus, the 95% confidence interval for
Confidence Interval=(226.81, 401.15).
Conclusion:
Thus, the 95% confidence interval for the slope is(226.81, 401.15).
Want to see more full solutions like this?
Chapter 12 Solutions
Beginning Statistics, 2nd Edition
- Business discussarrow_forwardBusiness discussarrow_forwardI just need to know why this is wrong below: What is the test statistic W? W=5 (incorrect) and What is the p-value of this test? (p-value < 0.001-- incorrect) Use the Wilcoxon signed rank test to test the hypothesis that the median number of pages in the statistics books in the library from which the sample was taken is 400. A sample of 12 statistics books have the following numbers of pages pages 127 217 486 132 397 297 396 327 292 256 358 272 What is the sum of the negative ranks (W-)? 75 What is the sum of the positive ranks (W+)? 5What type of test is this? two tailedWhat is the test statistic W? 5 These are the critical values for a 1-tailed Wilcoxon Signed Rank test for n=12 Alpha Level 0.001 0.005 0.01 0.025 0.05 0.1 0.2 Critical Value 75 70 68 64 60 56 50 What is the p-value for this test? p-value < 0.001arrow_forward
- ons 12. A sociologist hypothesizes that the crime rate is higher in areas with higher poverty rate and lower median income. She col- lects data on the crime rate (crimes per 100,000 residents), the poverty rate (in %), and the median income (in $1,000s) from 41 New England cities. A portion of the regression results is shown in the following table. Standard Coefficients error t stat p-value Intercept -301.62 549.71 -0.55 0.5864 Poverty 53.16 14.22 3.74 0.0006 Income 4.95 8.26 0.60 0.5526 a. b. Are the signs as expected on the slope coefficients? Predict the crime rate in an area with a poverty rate of 20% and a median income of $50,000. 3. Using data from 50 workarrow_forward2. The owner of several used-car dealerships believes that the selling price of a used car can best be predicted using the car's age. He uses data on the recent selling price (in $) and age of 20 used sedans to estimate Price = Po + B₁Age + ε. A portion of the regression results is shown in the accompanying table. Standard Coefficients Intercept 21187.94 Error 733.42 t Stat p-value 28.89 1.56E-16 Age -1208.25 128.95 -9.37 2.41E-08 a. What is the estimate for B₁? Interpret this value. b. What is the sample regression equation? C. Predict the selling price of a 5-year-old sedan.arrow_forwardian income of $50,000. erty rate of 13. Using data from 50 workers, a researcher estimates Wage = Bo+B,Education + B₂Experience + B3Age+e, where Wage is the hourly wage rate and Education, Experience, and Age are the years of higher education, the years of experience, and the age of the worker, respectively. A portion of the regression results is shown in the following table. ni ogolloo bash 1 Standard Coefficients error t stat p-value Intercept 7.87 4.09 1.93 0.0603 Education 1.44 0.34 4.24 0.0001 Experience 0.45 0.14 3.16 0.0028 Age -0.01 0.08 -0.14 0.8920 a. Interpret the estimated coefficients for Education and Experience. b. Predict the hourly wage rate for a 30-year-old worker with four years of higher education and three years of experience.arrow_forward
- 1. If a firm spends more on advertising, is it likely to increase sales? Data on annual sales (in $100,000s) and advertising expenditures (in $10,000s) were collected for 20 firms in order to estimate the model Sales = Po + B₁Advertising + ε. A portion of the regression results is shown in the accompanying table. Intercept Advertising Standard Coefficients Error t Stat p-value -7.42 1.46 -5.09 7.66E-05 0.42 0.05 8.70 7.26E-08 a. Interpret the estimated slope coefficient. b. What is the sample regression equation? C. Predict the sales for a firm that spends $500,000 annually on advertising.arrow_forwardCan you help me solve problem 38 with steps im stuck.arrow_forwardHow do the samples hold up to the efficiency test? What percentages of the samples pass or fail the test? What would be the likelihood of having the following specific number of efficiency test failures in the next 300 processors tested? 1 failures, 5 failures, 10 failures and 20 failures.arrow_forward
- The battery temperatures are a major concern for us. Can you analyze and describe the sample data? What are the average and median temperatures? How much variability is there in the temperatures? Is there anything that stands out? Our engineers’ assumption is that the temperature data is normally distributed. If that is the case, what would be the likelihood that the Safety Zone temperature will exceed 5.15 degrees? What is the probability that the Safety Zone temperature will be less than 4.65 degrees? What is the actual percentage of samples that exceed 5.25 degrees or are less than 4.75 degrees? Is the manufacturing process producing units with stable Safety Zone temperatures? Can you check if there are any apparent changes in the temperature pattern? Are there any outliers? A closer look at the Z-scores should help you in this regard.arrow_forwardNeed help pleasearrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 4. One-Way ANOVA: Analyze the customer satisfaction scores across four different product categories to determine if there is a significant difference in means. (Hints: The null can be about maintaining status-quo or no difference among groups) H0 = H1=arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





