PROBABILITY & STATS FOR ENGINEERING &SCI
9th Edition
ISBN: 9781285099804
Author: DEVORE
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.3, Problem 37E
a.
To determine
Test whether there is any significant difference between the average velocity in two different planes.
b.
To determine
Test whether there is enough evidence to conclude that the predictor variable is useful for predicting the value of the response variable with the slope coefficient less than 1.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain which characteristic of the STA leads to a consideration of a logistic model as opposed to a linear regression mode.
3. Wine Participant magazine has collected average price per bottle for the prestigious Chateau Le Thundebird bordeaux for different vintages (years).
The data appears in the table below.
year of bottling
price
a) draw the scatter diagram showing how wine price varies by vintage year
b) use the most appropriate regression equation to determine the relationship
between year of bottling (age) and price.
c) what is the explanatory power (RSQ) of that equation
d) determine the predicted price of a bottle of this wine for the 2017 vintage.
2009
36
2010
40
2011
51
2012
60
2013
68
2014
72
2015
70
2016
65
2018
51
2019
44
2020
39
OphthalmologyRetinitis pigmentosa (RP) is a hereditary ocular diseasein which patches of pigment appear on the retina, potentially resulting in substantial vision loss and in somecases complete blindness. An important issue is how fastthe subjects decline. Visual field is an important measureof area of vision, which is measured in degree2. A visualfield area for a normal person is around 11,000 degree2.The longitudinal data in Table 11.29 were provided by anindividual patient.Table 11.29 Longitudinal visual field data forone RP patientTime Visual field area lnVisit (yr) (degree2) (visual field area)1 0 3059 8.032 1 3053 8.023 2 1418 7.264 3 1692 7.435 4 1978 7.596 5 1567 7.367 6 1919 7.568 7 1998 7.609 11 1648 7.4110 13 1721 7.4511 15 1264 7.14mean 6.09 1938 7.532sd 4.97 597 0.280Suppose the rate of change of ln (visual field) is a linearfunction of follow-up time.11.103 Write down a linear regression model that summarizes this relationship.11.104 Fit the regression line using…
Chapter 12 Solutions
PROBABILITY & STATS FOR ENGINEERING &SCI
Ch. 12.1 - The efficiency ratio for a steel specimen immersed...Ch. 12.1 - The article Exhaust Emissions from Four-Stroke...Ch. 12.1 - Bivariate data often arises from the use of two...Ch. 12.1 - The accompanying data on y = ammonium...Ch. 12.1 - The article Objective Measurement of the...Ch. 12.1 - One factor in the development of tennis elbow, a...Ch. 12.1 - The article Some Field Experience in the Use of an...Ch. 12.1 - Referring to Exercise 7, suppose that the standard...Ch. 12.1 - The flow rate y (m3/min) in a device used for...Ch. 12.1 - Suppose the expected cost of a production run is...
Ch. 12.1 - Suppose that in a certain chemical process the...Ch. 12.2 - Refer back to the data in Exercise 4, in which y =...Ch. 12.2 - The accompanying data on y = ammonium...Ch. 12.2 - Refer to the lank temperature-efficiency ratio...Ch. 12.2 - Values of modulus of elasticity (MOE, the ratio of...Ch. 12.2 - The article Characterization of Highway Runoff in...Ch. 12.2 - For the past decade, rubber powder has been used...Ch. 12.2 - For the past decade, rubber powder has been used...Ch. 12.2 - The following data is representative of that...Ch. 12.2 - The bond behavior of reinforcing bars is an...Ch. 12.2 - Wrinkle recovery angle and tensile strength are...Ch. 12.2 - Calcium phosphate cement is gaining increasing...Ch. 12.2 - a. Obtain SSE for the data in Exercise 19 from the...Ch. 12.2 - The invasive diatom species Didymosphenia geminata...Ch. 12.2 - Prob. 25ECh. 12.2 - Show that the point of averages (x,y) lies on the...Ch. 12.2 - Prob. 27ECh. 12.2 - a. Consider the data in Exercise 20. Suppose that...Ch. 12.2 - Consider the following three data sets, in which...Ch. 12.3 - Reconsider the situation described in Exercise 7,...Ch. 12.3 - During oil drilling operations, components of the...Ch. 12.3 - Exercise 16 of Section 12.2 gave data on x =...Ch. 12.3 - During oil drilling operations, components of the...Ch. 12.3 - For the past decade, rubber powder has been used...Ch. 12.3 - Refer back to the data in Exercise 4, in which y =...Ch. 12.3 - Misi (airborne droplets or aerosols) is generated...Ch. 12.3 - Prob. 37ECh. 12.3 - Refer to the data on x = liberation rate and y =...Ch. 12.3 - Carry out the model utility test using the ANOVA...Ch. 12.3 - Prob. 40ECh. 12.3 - Prob. 41ECh. 12.3 - Verify that if each xi is multiplied by a positive...Ch. 12.3 - Prob. 43ECh. 12.4 - Fitting the simple linear regression model to the...Ch. 12.4 - Reconsider the filtration ratemoisture content...Ch. 12.4 - Astringency is the quality in a wine that makes...Ch. 12.4 - The simple linear regression model provides a very...Ch. 12.4 - Prob. 48ECh. 12.4 - You are told that a 95% CI for expected lead...Ch. 12.4 - Prob. 50ECh. 12.4 - Refer to Example 12.12 in which x = test track...Ch. 12.4 - Plasma etching is essential to the fine-line...Ch. 12.4 - Consider the following four intervals based on the...Ch. 12.4 - The height of a patient is useful for a variety of...Ch. 12.4 - Prob. 55ECh. 12.4 - The article Bone Density and Insertion Torque as...Ch. 12.5 - The article Behavioural Effects of Mobile...Ch. 12.5 - The Turbine Oil Oxidation Test (TOST) and the...Ch. 12.5 - Toughness and fibrousness of asparagus are major...Ch. 12.5 - Head movement evaluations are important because...Ch. 12.5 - Prob. 61ECh. 12.5 - Prob. 62ECh. 12.5 - Prob. 63ECh. 12.5 - The accompanying data on x = UV transparency index...Ch. 12.5 - Torsion during hip external rotation and extension...Ch. 12.5 - Prob. 66ECh. 12.5 - Prob. 67ECh. 12 - The appraisal of a warehouse can appear...Ch. 12 - Prob. 69SECh. 12 - Forensic scientists are often interested in making...Ch. 12 - Phenolic compounds are found in the effluents of...Ch. 12 - The SAS output at the bottom of this page is based...Ch. 12 - The presence of hard alloy carbides in high...Ch. 12 - The accompanying data was read from a scatterplot...Ch. 12 - An investigation was carried out to study the...Ch. 12 - Prob. 76SECh. 12 - Open water oil spills can wreak terrible...Ch. 12 - In Section 12.4, we presented a formula for...Ch. 12 - Show that SSE=Syy1Sxy, which gives an alternative...Ch. 12 - Suppose that x and y are positive variables and...Ch. 12 - Let sx and sy denote the sample standard...Ch. 12 - Verify that the t statistic for testing H0: 1 = 0...Ch. 12 - Use the formula for computing SSE to verify that...Ch. 12 - In biofiltration of wastewater, air discharged...Ch. 12 - Normal hatchery processes in aquaculture...Ch. 12 - Prob. 86SECh. 12 - Prob. 87SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- The data below is for a hypothetical study investigating the Systolic Blood Pressure (SBP) of construction workers. The table shows respective measurements of 20 workers along with hours of work per day and the area of the city the work took place. [You can use Excel-Data Analysis – Regression or http://vassarstats.net/multU.html] SBP Hrs/day Area 109.6 7 east 107.4 8 east 140.3 9 east 146.5 12 east 98.2 6 east 137.8 9 east 124.1 10 east 113.2 8 east 127.8 9 east 125.3 8 east 108.5 6 west 181.3 13 west 137.4 10 west 146.2 10 west 142.4 9 west 123.7 8 west 129.6 8 west 143.6 9 west 160.7 11 west 148.3 9 west a) What is the regression equation? b) Interpret the meaning of the slopes in this problem. d) At the 0.05 level of significance, determine whether each independent variable makes a contribution to the…arrow_forwardConsider the following simple regression model of house prices: house_price = β0 + β1*land_size + u. What could be included in u? Name 2 examples.arrow_forwardMental development in humans is related to the volume of the part of the brain known as the hippocampus. The given regression output shows the mental development index at age 24 months vs. the hippocampus volume in ml at birth for a representative sample of 17 premature infants. MDI_24 By Vol(ml) 2.5 2.4- 2.3- 2.2- 2.1- 2- 1.9- 1.8- 1.7- 1.6- 1.5- 50 60 70 80 90 100 110 12 Vol(ml) Regression Analysis MDI_24MO = 1.1359094 + 0.0093475*HippoVol Summary of Fit RSquare RSquare Adj S Mean of Response 0.265 0.216 0.223 1.97758 NObservations 17 Analysis of Variance Source Model DF Sum of Squares 1 0.268 Mean Square F Ratio 0.268 5.4023 MDI_24M0arrow_forward
- Wrinkle recovery angle and tensile strength are the two most important characteristics for evaluating the performance of crosslinked cotton fabric. An increase in the degree of crosslinking, as determined by ester carboxyl band absorbance, improves the wrinkle resistance of the fabric (at the expense of reducing mechanical strength). The accompanying data on x = absorbance and y = wrinkle resistance angle was read from a graph in the paper "Predicting the Performance of Durable Press Finished Cotton Fabric with Infrared Spectroscopy".† x 0.115 0.126 0.183 0.246 0.282 0.344 0.355 0.452 0.491 0.554 0.651 y 334 342 355 363 365 372 381 392 400 412 420 Here is regression output from Minitab: Predictor Constant absorb S = 3.60498 Coef 321.878 156.711 SOURCE Regression Residual Error Total SE Coef 2.483 6.464 R-Sq = 98.5% DF 1 9 10 SS 7639.0 117.0 7756.0 T 129.64 24.24 0.000 0.000 R-Sq (adj) = 98.3% MS 7639.0 13.0 F P 587.81 (a) Does the simple linear regression model appear to be…arrow_forwardWrinkle recovery angle and tensile strength are the two most important characteristics for evaluating the performance of crosslinked cotton fabric. An increase in the degree of crosslinking, as determined by ester carboxyl band absorbance, improves the wrinkle resistance of the fabric (at the expense of reducing mechanical strength). The accompanying data on x = absorbance and y = wrinkle resistance angle was read from a graph in the paper "Predicting the Performance of Durable Press Finished Cotton Fabric with Infrared Spectroscopy".t 半 0.115 0.126 0.183 0.246 0.282 0.344 0.355 0.452 0.491 0.554 0.651 334 342 355 363 365 372 381 392 400 412 420 Here is regression output from Minitab: Predictor Coef SE Coef P Constant 321.878 2.483 129.64 0.000 absorb 156.711 6.464 24.24 0.000 S = 3.60498 R-Sq = 98.5% R-Są (adj) - 98.3% SOURCE DF MS F P Regression 1 7639.0 7639.0 587.81 0.000 Residual Error 9 117.0 13.0 Total 10 7756.0 (a) Does the simple linear regression model appear to be…arrow_forwardWrinkle recovery angle and tensile strength are the two most important characteristics for evaluating the performance of crosslinked cotton fabric. An increase in the degree of crosslinking, as determined by ester carboxyl band absorbance, improves the wrinkle resistance of the fabric (at the expense of reducing mechanical strength). The accompanying data on x = absorbance and y = wrinkle resistance angle was read from a graph in the paper "Predicting the Performance of Durable Press Finished Cotton Fabric with Infrared Spectroscopy".t x 0.115 0.126 0.183 0.246 0.282 0.344 0.355 0.452 0.491 0.554 0.651 y 334 342 355 363 365 372 381 400 392 412 420 Here is regression output from Minitab: Predictor Constant absorb S = 3.60498 Coef 321.878 156.711 SOURCE Regression Residual Error Total R-Sq= 98.5% DF SE Coef 2.483 6.464 1 9 10 SS 7639.0 117.0 7756..0 T 129.64 24.24 P 0.000 0.000. R-Sq (adj) 98.3% MS 7639.0 13.0 F 587.81 (a) Does the simple linear regression model appear to be appropriate?…arrow_forward
- Acrylamide is a chemical that is sometimes found in cooked starchy foods and which is thought to increase the risk of certain kinds of cancer. The paper "A Statistical Regression Model for the Estimation of Acrylamide Concentrations in French Fries for Excess Lifetime Cancer Risk Assessment"+ describes a study to investigate the effect of frying time (in seconds) and acrylamide concentration (in micrograms per kilogram) in french fries. The data in the accompanying table are approximate values read from a graph that appeared in the paper. Frying Acrylamide Time Concentration 150 240 240 270 300 300 150 + 115 190 180 145 275 (a) Find the equation of the least-squares line for predicting acrylamide concentration using frying time. (Round your answers to four decimal places.) ŷ = (b) Does the equation of the least-squares line support the conclusion that longer frying times tend to be paired with higher acrylamide concentrations? Explain. No, the least squares regression line equation…arrow_forwardAcrylamide is a chemical that is sometimes found in cooked starchy foods and which is thought to increase the risk of certain kinds of cancer. The paper "A Statistical Regression Model for the Estimation of Acrylamide Concentrations in French Fries for Excess Lifetime Cancer Risk Assessment"+ describes a study to investigate the effect of frying time (in seconds) and acrylamide concentration (in micrograms per kilogram) in french fries. The data in the accompanying table are approximate values read from a graph that appeared in the paper. Frying Acrylamide Time Concentration 150 240 240 270 300 300 150 125 + 195 185 135 275 USE SALT (a) Find the equation of the least-squares line for predicting acrylamide concentration using frying time. (Round your answers to four decimal places.) ŷ = (b) Does the equation of the least-squares line support the conclusion that longer frying times tend to be paired with higher acrylamide concentrations? Explain. O No, the least squares regression line…arrow_forwardAcrylamide is a chemical that is sometimes found in cooked starchy foods and which is thought to increase the risk of certain kinds of cancer. The paper "A Statistical Regression Model for the Estimation of Acrylamide Concentrations in French Fries for Excess Lifetime Cancer Risk Assessment"t describes a study to investigate the effect of x = y = acrylamide concentration (in micrograms per kg) in French fries. The data in the accompanying table are approximate values read from a graph that appeared in the paper. frying time (in seconds) and %3D Frying Time Acrylamide Concentration 150 155 240 115 240 190 270 180 300 140 300 265arrow_forward
- A method of estimating earth temperature based on local precipitation is to build models based on 100s of years of earth at several different constant green house gas level (So constant global temperature for 100s of years) , and compare the correlation of statistical relationships between predicted precipitation patterns in a region, and observed precipitation patterns for a region in a few year time period.arrow_forwardGiven that the correlation coefficient which relates length of the fish and PCB levels is r = 0.949, the regression equation that predicts PCB levels using fish length is A) Length of fish = 8.72+6.24*PCB level B) PCB level = 32.92 +0.26*length of fish O C) PCB level = 32.92+3.44"length of fish D) Length of fish = 6.24 + 8.72*PCB levelarrow_forwardA multiple regression model is created to predict college GPA based on high school (HS) GPA, SAT score, and the number of books read. From the table below, what would be the correct interpretation of the test Ho : βSAT = 0? a) SAT scores help in the prediction of college GPA b) SAT scores does NOT help in the prediction of college GPA c) SAT scores do NOT help in the prediction when HS GPA and Number of Books Read are included in the model d) SAT scores do help in the prediction when HS GPA and Number of Books Read is included in the modelarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY