Calculus & Its Applications
12th Edition
ISBN: 9780137590810
Author: Larry J. Goldstein, David C. Lay, David I. Schneider, Nakhle H. Asmar, William Edward Tavernetti
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.3, Problem 26E
To determine
To calculate:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let Y be a continuous random variable with cumulative distribution function:
A
A
B B
C C
D D
E E
F(y) = 1-e-(y-a)²,
where a is a constant. What is the 75th percentile of Y?
(A) F(0.75)
(B)
-√2 In ¹
√2 In ¹
(C)
(D) a - 2 Vln2
(E) a +2√In2
a-
a +
for y ≤ a
otherwise
Borrowers leave the issue desk of a small library according to a Poisson
process with rate 40 per hour. The number of books issued to a
borrower has a uniform distribution with probability mass function
x=1,2,..., 6.
px(x)=
(a) Calculate the mean and variance of the number of books issued by
the library to a borrower.
The random variable S(t) denotes the total number of books issued in
the time interval (0, t], where t is measured in hours.
(b) Calculate the mean and variance of the number of books issued in
a morning (9 am-12 noon).
(c) Calculate the index of dispersion for the random process
{S(t); t >0}, and comment on what your value tells you about the
pattern of book-borrowing at the library.
Just a,b,c
Chapter 12 Solutions
Calculus & Its Applications
Ch. 12.1 - Compute the expected value and the variance of the...Ch. 12.1 - Prob. 2CYUCh. 12.1 - Prob. 1ECh. 12.1 - Prob. 2ECh. 12.1 - Prob. 3ECh. 12.1 - Prob. 4ECh. 12.1 - Prob. 5ECh. 12.1 - Probability Table, Expected Value The number of...Ch. 12.1 - Prob. 7ECh. 12.1 - Prob. 8E
Ch. 12.1 - Decision Making Based on Expected Value A citrus...Ch. 12.1 - Prob. 10ECh. 12.2 - Prob. 1CYUCh. 12.2 - Prob. 2CYUCh. 12.2 - Prob. 1ECh. 12.2 - Prob. 2ECh. 12.2 - Prob. 3ECh. 12.2 - Prob. 4ECh. 12.2 - Prob. 5ECh. 12.2 - Prob. 6ECh. 12.2 - Prob. 7ECh. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - Prob. 10ECh. 12.2 - Prob. 11ECh. 12.2 - Prob. 12ECh. 12.2 - Prob. 13ECh. 12.2 - Prob. 14ECh. 12.2 - Prob. 15ECh. 12.2 - Prob. 16ECh. 12.2 - Prob. 17ECh. 12.2 - Prob. 18ECh. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - Prob. 21ECh. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - Prob. 25ECh. 12.2 - Prob. 26ECh. 12.2 - An experiment consists of selecting a point at...Ch. 12.2 - Prob. 28ECh. 12.2 - Prob. 29ECh. 12.2 - Prob. 30ECh. 12.2 - Prob. 31ECh. 12.2 - Prob. 32ECh. 12.2 - Prob. 33ECh. 12.2 - Prob. 34ECh. 12.2 - Prob. 35ECh. 12.2 - A random variable X has a cumulative distribution...Ch. 12.2 - Prob. 37ECh. 12.2 - Prob. 38ECh. 12.3 - Prob. 1CYUCh. 12.3 - Prob. 2CYUCh. 12.3 - Prob. 1ECh. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Prob. 5ECh. 12.3 - Prob. 6ECh. 12.3 - Prob. 7ECh. 12.3 - Prob. 8ECh. 12.3 - Prob. 9ECh. 12.3 - Prob. 10ECh. 12.3 - Prob. 11ECh. 12.3 - Prob. 12ECh. 12.3 - Expected Reading Time The amount oftime (in...Ch. 12.3 - Prob. 14ECh. 12.3 - Prob. 15ECh. 12.3 - Prob. 16ECh. 12.3 - Prob. 17ECh. 12.3 - Prob. 18ECh. 12.3 - If X is a random variable with density function...Ch. 12.3 - Prob. 20ECh. 12.3 - Prob. 21ECh. 12.3 - Prob. 22ECh. 12.3 - Prob. 23ECh. 12.3 - Prob. 24ECh. 12.3 - Prob. 25ECh. 12.3 - Prob. 26ECh. 12.4 - The emergency flasher on an automobile is...Ch. 12.4 - Prob. 2CYUCh. 12.4 - Prob. 1ECh. 12.4 - Prob. 2ECh. 12.4 - Prob. 3ECh. 12.4 - Prob. 4ECh. 12.4 - Prob. 5ECh. 12.4 - In a large factory there is an average of two...Ch. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - During a certain part of the day, the time between...Ch. 12.4 - During a certain part of the day, the time between...Ch. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Reliability of Electronic Components Suppose that...Ch. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Find the expected values and the standard...Ch. 12.4 - Prob. 17ECh. 12.4 - Find the expected values and the standard...Ch. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.4 - Prob. 25ECh. 12.4 - Normal Distribution and Life of a Tire Suppose...Ch. 12.4 - Amount of Milk in a Container If the amount of...Ch. 12.4 - Breaking weight Theamount of weight required to...Ch. 12.4 - Time of a commute A student with an eight oclock...Ch. 12.4 - Prob. 30ECh. 12.4 - Diameter of a Bolt A certain type of bolt must fit...Ch. 12.4 - Prob. 32ECh. 12.4 - Prob. 33ECh. 12.4 - Prob. 34ECh. 12.4 - Prob. 35ECh. 12.4 - Prob. 36ECh. 12.4 - Prob. 37ECh. 12.5 - A public health officer is tracking down the...Ch. 12.5 - Suppose that a random variable X has a Poisson...Ch. 12.5 - Prob. 2ECh. 12.5 - Prob. 3ECh. 12.5 - Prob. 4ECh. 12.5 - Number of Insurance Claims The monthly number of...Ch. 12.5 - Waiting Time in an Emergency Room On a typical...Ch. 12.5 - Prob. 7ECh. 12.5 - Number of Cars at a Tollgate During a certain part...Ch. 12.5 - Poisson Distribution in a Mixing Problem A bakery...Ch. 12.5 - Prob. 10ECh. 12.5 - Prob. 11ECh. 12.5 - Quality Control The quality-control department at...Ch. 12.5 - Two Competing Companies In a certain town, there...Ch. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.5 - Prob. 17ECh. 12.5 - Prob. 18ECh. 12.5 - Prob. 19ECh. 12.5 - Prob. 20ECh. 12.5 - Prob. 21ECh. 12.5 - Prob. 22ECh. 12.5 - Prob. 23ECh. 12.5 - Prob. 24ECh. 12.5 - Prob. 25ECh. 12.5 - The number of accidents occurring each month at a...Ch. 12 - What is probability table?Ch. 12 - Prob. 2FCCECh. 12 - Prob. 3FCCECh. 12 - Prob. 4FCCECh. 12 - Prob. 5FCCECh. 12 - Prob. 6FCCECh. 12 - Prob. 7FCCECh. 12 - Prob. 8FCCECh. 12 - Prob. 9FCCECh. 12 - Give two ways to compute the variance of a...Ch. 12 - Prob. 11FCCECh. 12 - Prob. 12FCCECh. 12 - Prob. 13FCCECh. 12 - Prob. 14FCCECh. 12 - How is an integral involving a normal density...Ch. 12 - Prob. 16FCCECh. 12 - Prob. 17FCCECh. 12 - Let X be a continuous random variable on 0x2, with...Ch. 12 - Prob. 2RECh. 12 - Prob. 3RECh. 12 - Prob. 4RECh. 12 - Prob. 5RECh. 12 - Prob. 6RECh. 12 - Prob. 7RECh. 12 - Prob. 8RECh. 12 - Probability of Gasoline Sales A certain gas...Ch. 12 - Prob. 10RECh. 12 - Prob. 11RECh. 12 - Prob. 12RECh. 12 - Prob. 13RECh. 12 - Prob. 14RECh. 12 - Prob. 15RECh. 12 - Prob. 16RECh. 12 - Prob. 17RECh. 12 - Deciding on a Service Contract The condenser motor...Ch. 12 - Prob. 19RECh. 12 - Prob. 20RECh. 12 - Prob. 21RECh. 12 - Prob. 22RECh. 12 - Prob. 23RECh. 12 - Prob. 24RECh. 12 - Prob. 25RECh. 12 - Prob. 26RECh. 12 - Area under the Normal Curve It is useful in some...Ch. 12 - Prob. 28RECh. 12 - Prob. 29RECh. 12 - Prob. 30RECh. 12 - Prob. 31RECh. 12 - Prob. 32RECh. 12 - Prob. 33RECh. 12 - Rolling Dice A pair of dice is rolled until a 7 or...Ch. 12 - Rolling Dice A pair of dice is rolled until a 7 or...Ch. 12 - Rolling Dice A pair of dice is rolled until a 7 or...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Population Genetics In the study of population genetics, an important measure of inbreeding is the proportion of homozygous genotypesthat is, instances in which the two alleles carried at a particular site on an individuals chromosomes are both the same. For population in which blood-related individual mate, them is a higher than expected frequency of homozygous individuals. Examples of such populations include endangered or rare species, selectively bred breeds, and isolated populations. in general. the frequency of homozygous children from mating of blood-related parents is greater than that for children from unrelated parents Measured over a large number of generations, the proportion of heterozygous genotypesthat is, nonhomozygous genotypeschanges by a constant factor 1 from generation to generation. The factor 1 is a number between 0 and 1. If 1=0.75, for example then the proportion of heterozygous individuals in the population decreases by 25 in each generation In this case, after 10 generations, the proportion of heterozygous individuals in the population decreases by 94.37, since 0.7510=0.0563, or 5.63. In other words, 94.37 of the population is homozygous. For specific types of matings, the proportion of heterozygous genotypes can be related to that of previous generations and is found from an equation. For mating between siblings 1 can be determined as the largest value of for which 2=12+14. This equation comes from carefully accounting for the genotypes for the present generation the 2 term in terms of those previous two generations represented by for the parents generation and by the constant term of the grandparents generation. a Find both solutions to the quadratic equation above and identify which is 1 use a horizontal span of 1 to 1 in this exercise and the following exercise. b After 5 generations, what proportion of the population will be homozygous? c After 20 generations, what proportion of the population will be homozygous?arrow_forwardAssume that the probability that an airplane engine will fail during a torture test is 12and that the aircraft in question has 4 engines. Construct a sample space for the torture test. Use S for survive and F for fail.arrow_forwardFind P(XS3) if the cumulative distribution function for the random variable X is: 0, x<-1, 0.25, -15x<1, F(x)=0.5, 15x<3, 0.75, 35x<5, 1, 5Sx. Select one: a. 0.75 b. 1.0 c. 0.25 d. 0.50arrow_forward
- Let the random variable X be the time in seconds between incoming telephone calls at a busy switchboard. Suppose that a reasonable probability model for X is given by the pdf: fx(x) = { ie for 0arrow_forwardThe pH water samples from a specific lake is a random variable X with probability density function. f(x) = {8 (7– x)², 5 < x<7 0, elsewhere a. ) Find E(X) ( expected value or mean) b. ) Find V(X) ( Variance)arrow_forwardThe probability density function of random variable X is f(x) = a) Find the probability that X > 0.5 0.4753 b) Find the probability that 0.3 < X < 0.63 0.3423 c) Find the expected value of X 0.4825 d) Find the variance of X 0.0806 ✔ e) Find the standard deviation of X 0.2838 5.X for 0 ≤ x ≤ 1 and 0 otherwise. Do computations using the R integrate function. 19 f) Find the probability that X is within 0.5 standard deviations of its expected value g) In the following paste your R script for this problem b = integrate(h.lower=0,upper-1)$value #var(x) var = b-(a)^2 print(var) #standard deviation sqrt(var)arrow_forwardAn epidemic process is such that an infected individual is infectious for a time period which is exponentially distributed with rate parameter 3. While infectious, the individual gets into contact with susceptible individuals according to a Poisson process with rate parameter λ. Let X be the number of susceptible individuals who get into contact with infected individual. The probability generating function of the distribution of X is Select one: a. O b. B B+λ-As Oc. e-B(1-s) -XB(1-8) βλ B+λ-As d. earrow_forwardThe lifetime X in hours of an electronic tube is a random variable having a probability density function given by f(r) = re, I (a) Compute the expected lifetime of such a tube. (b) Compute the variance of the lifetime of such a tube. (c) Find the median lifetime m of such a tube that satisfies P(X > m) = 0.5.arrow_forwardShow complete solutions.arrow_forwardHand write, As soon as possiblearrow_forwardCalculate the expected value E(X) of the given random variable X. X is the number of tails that come up when a coin is tossed 20 times.arrow_forwardThe distribution of the random variable X is described by the following probability distribution function: a) Show that the probability density function is well defined. b) Derive the cumulative distribution function. c) Compute the expected value and the variance.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License