Calculus & Its Applications
12th Edition
ISBN: 9780137590810
Author: Larry J. Goldstein, David C. Lay, David I. Schneider, Nakhle H. Asmar, William Edward Tavernetti
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.2, Problem 22E
To determine
The corresponding density function for a random variable
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The probability density function of the continuous random variable X defined in the set of non-negative real numbers is given as f(x) = 2.exp(-2x). What is the expected value of X?
Asmall petrol station is supplied with petrol once a week. Assume that its volume X of potential sales (in units of 10,000 litres) has the probability density function f(x) = 6(x − 2)(3 − x) for 2 ≤ x ≤ 3 and f(x) = 0 otherwise. Determine the mean and the variance of this distribution. What capacity must the tank have for the probability that the tank will be emptied in a given week to be 5%?
let X denotes the percentage of time out of a 40-hour workweek that a call center agent is directly serving a client by answering phone calls. Suppose that X has a probability density function defined by f(x) =3x² for 0 ≤ x ≤ 1. Find the mean and variance of X. Interpret the results.
Chapter 12 Solutions
Calculus & Its Applications
Ch. 12.1 - Compute the expected value and the variance of the...Ch. 12.1 - Prob. 2CYUCh. 12.1 - Prob. 1ECh. 12.1 - Prob. 2ECh. 12.1 - Prob. 3ECh. 12.1 - Prob. 4ECh. 12.1 - Prob. 5ECh. 12.1 - Probability Table, Expected Value The number of...Ch. 12.1 - Prob. 7ECh. 12.1 - Prob. 8E
Ch. 12.1 - Decision Making Based on Expected Value A citrus...Ch. 12.1 - Prob. 10ECh. 12.2 - Prob. 1CYUCh. 12.2 - Prob. 2CYUCh. 12.2 - Prob. 1ECh. 12.2 - Prob. 2ECh. 12.2 - Prob. 3ECh. 12.2 - Prob. 4ECh. 12.2 - Prob. 5ECh. 12.2 - Prob. 6ECh. 12.2 - Prob. 7ECh. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - Prob. 10ECh. 12.2 - Prob. 11ECh. 12.2 - Prob. 12ECh. 12.2 - Prob. 13ECh. 12.2 - Prob. 14ECh. 12.2 - Prob. 15ECh. 12.2 - Prob. 16ECh. 12.2 - Prob. 17ECh. 12.2 - Prob. 18ECh. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - Prob. 21ECh. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - Prob. 25ECh. 12.2 - Prob. 26ECh. 12.2 - An experiment consists of selecting a point at...Ch. 12.2 - Prob. 28ECh. 12.2 - Prob. 29ECh. 12.2 - Prob. 30ECh. 12.2 - Prob. 31ECh. 12.2 - Prob. 32ECh. 12.2 - Prob. 33ECh. 12.2 - Prob. 34ECh. 12.2 - Prob. 35ECh. 12.2 - A random variable X has a cumulative distribution...Ch. 12.2 - Prob. 37ECh. 12.2 - Prob. 38ECh. 12.3 - Prob. 1CYUCh. 12.3 - Prob. 2CYUCh. 12.3 - Prob. 1ECh. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Prob. 5ECh. 12.3 - Prob. 6ECh. 12.3 - Prob. 7ECh. 12.3 - Prob. 8ECh. 12.3 - Prob. 9ECh. 12.3 - Prob. 10ECh. 12.3 - Prob. 11ECh. 12.3 - Prob. 12ECh. 12.3 - Expected Reading Time The amount oftime (in...Ch. 12.3 - Prob. 14ECh. 12.3 - Prob. 15ECh. 12.3 - Prob. 16ECh. 12.3 - Prob. 17ECh. 12.3 - Prob. 18ECh. 12.3 - If X is a random variable with density function...Ch. 12.3 - Prob. 20ECh. 12.3 - Prob. 21ECh. 12.3 - Prob. 22ECh. 12.3 - Prob. 23ECh. 12.3 - Prob. 24ECh. 12.3 - Prob. 25ECh. 12.3 - Prob. 26ECh. 12.4 - The emergency flasher on an automobile is...Ch. 12.4 - Prob. 2CYUCh. 12.4 - Prob. 1ECh. 12.4 - Prob. 2ECh. 12.4 - Prob. 3ECh. 12.4 - Prob. 4ECh. 12.4 - Prob. 5ECh. 12.4 - In a large factory there is an average of two...Ch. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - During a certain part of the day, the time between...Ch. 12.4 - During a certain part of the day, the time between...Ch. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Reliability of Electronic Components Suppose that...Ch. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Find the expected values and the standard...Ch. 12.4 - Prob. 17ECh. 12.4 - Find the expected values and the standard...Ch. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.4 - Prob. 25ECh. 12.4 - Normal Distribution and Life of a Tire Suppose...Ch. 12.4 - Amount of Milk in a Container If the amount of...Ch. 12.4 - Breaking weight Theamount of weight required to...Ch. 12.4 - Time of a commute A student with an eight oclock...Ch. 12.4 - Prob. 30ECh. 12.4 - Diameter of a Bolt A certain type of bolt must fit...Ch. 12.4 - Prob. 32ECh. 12.4 - Prob. 33ECh. 12.4 - Prob. 34ECh. 12.4 - Prob. 35ECh. 12.4 - Prob. 36ECh. 12.4 - Prob. 37ECh. 12.5 - A public health officer is tracking down the...Ch. 12.5 - Suppose that a random variable X has a Poisson...Ch. 12.5 - Prob. 2ECh. 12.5 - Prob. 3ECh. 12.5 - Prob. 4ECh. 12.5 - Number of Insurance Claims The monthly number of...Ch. 12.5 - Waiting Time in an Emergency Room On a typical...Ch. 12.5 - Prob. 7ECh. 12.5 - Number of Cars at a Tollgate During a certain part...Ch. 12.5 - Poisson Distribution in a Mixing Problem A bakery...Ch. 12.5 - Prob. 10ECh. 12.5 - Prob. 11ECh. 12.5 - Quality Control The quality-control department at...Ch. 12.5 - Two Competing Companies In a certain town, there...Ch. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.5 - Prob. 17ECh. 12.5 - Prob. 18ECh. 12.5 - Prob. 19ECh. 12.5 - Prob. 20ECh. 12.5 - Prob. 21ECh. 12.5 - Prob. 22ECh. 12.5 - Prob. 23ECh. 12.5 - Prob. 24ECh. 12.5 - Prob. 25ECh. 12.5 - The number of accidents occurring each month at a...Ch. 12 - What is probability table?Ch. 12 - Prob. 2FCCECh. 12 - Prob. 3FCCECh. 12 - Prob. 4FCCECh. 12 - Prob. 5FCCECh. 12 - Prob. 6FCCECh. 12 - Prob. 7FCCECh. 12 - Prob. 8FCCECh. 12 - Prob. 9FCCECh. 12 - Give two ways to compute the variance of a...Ch. 12 - Prob. 11FCCECh. 12 - Prob. 12FCCECh. 12 - Prob. 13FCCECh. 12 - Prob. 14FCCECh. 12 - How is an integral involving a normal density...Ch. 12 - Prob. 16FCCECh. 12 - Prob. 17FCCECh. 12 - Let X be a continuous random variable on 0x2, with...Ch. 12 - Prob. 2RECh. 12 - Prob. 3RECh. 12 - Prob. 4RECh. 12 - Prob. 5RECh. 12 - Prob. 6RECh. 12 - Prob. 7RECh. 12 - Prob. 8RECh. 12 - Probability of Gasoline Sales A certain gas...Ch. 12 - Prob. 10RECh. 12 - Prob. 11RECh. 12 - Prob. 12RECh. 12 - Prob. 13RECh. 12 - Prob. 14RECh. 12 - Prob. 15RECh. 12 - Prob. 16RECh. 12 - Prob. 17RECh. 12 - Deciding on a Service Contract The condenser motor...Ch. 12 - Prob. 19RECh. 12 - Prob. 20RECh. 12 - Prob. 21RECh. 12 - Prob. 22RECh. 12 - Prob. 23RECh. 12 - Prob. 24RECh. 12 - Prob. 25RECh. 12 - Prob. 26RECh. 12 - Area under the Normal Curve It is useful in some...Ch. 12 - Prob. 28RECh. 12 - Prob. 29RECh. 12 - Prob. 30RECh. 12 - Prob. 31RECh. 12 - Prob. 32RECh. 12 - Prob. 33RECh. 12 - Rolling Dice A pair of dice is rolled until a 7 or...Ch. 12 - Rolling Dice A pair of dice is rolled until a 7 or...Ch. 12 - Rolling Dice A pair of dice is rolled until a 7 or...
Knowledge Booster
Similar questions
- Let X be a continuous random variable with PDF 3 x > 1 x4 fx(x) = otherwise Find the mean and variance of x.arrow_forwardLet X be a random variable with uniform distribution on the interval [-2,2]. Let Y be defined as Y = X5. Calculate the pdf of Y.arrow_forwardIf probability density function of a random varíable X is f(x) = x² for –1SXS1, and %3D O for any other value of x %3D is then, the percentage probabilityParrow_forward
- The probability density function of a continuous random variable is given by 1 1 4 f (x) = - 4 for x > 0. a) Find P(X> 5). b) Find the mean of X. c) Find the CDF (cumulative distribution function). d) Use the CDF to find the median of X.arrow_forwardA service contract on a computer costs $100 per year. The contract covers all necessary maintenance and repairs on the computer. Suppose that the actual cost to the manufacturer for providing this service is a random variable X (measured in hundreds of dollars) whose probability density function is f(x) = (x - 5)^4/625,0 ≤ x ≤ 5. Compute E(X ) and determine how much moneythe manufacturer expects to make on each service contract on average.arrow_forwardSuppose X and Y are two independent Uniform(0, 1) random variables. Use the cumulative distribution function method to find the probability density function of their sum U = X + Y.arrow_forward
- Let X be a Gaussian random variable with zero mean and variance equal to 2. 1-Find the probability density function of the random variableY = 4X + 4 2-Find the probability P(Y>4).arrow_forwardLet X1, X2,..., Xn be a random sample of size n > 3 from a normal distribution with unknown mean μ and known variance equal to 2. Give an expression for the density function of X₁ and obtain the log-likelihood function for the sample.arrow_forwardSuppose that X and Y are independent and uniformly distributed random variables. Range for X is (−1, 1) and for Y is (0, 1). Define a new random variable U = XY, then find the probability density function of this new random variable.arrow_forward
- The life expectancy of a smartphone's battery X in days is a continuous random variable with probability density function fx=6x1-x for 0 ≤ q x ≤ q 1. Find the probability that a smartphone chosen at random will have a life expectancy exceeding 12 hours.arrow_forwardThe random variable X models the loss in thousands of dollars due to a fire in a commercial building. Its density function is f(x) = 0.005*(20-x) for 0 being less than or equal to x and x being less than or equal to 20 and f(x)= 0 otherwise. Given that a loss due to the fire exceeds $8000, find the probability the loss exceeds $16000.arrow_forwardPlease helparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt