WEBASSIGN F/EPPS DISCRETE MATHEMATICS
5th Edition
ISBN: 9780357540244
Author: EPP
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.2, Problem 8ES
In 8 and 9, a finite-state automaton is given by an annotated next-state table. For each automaton:
a. Find its states.
b. Find its input symbols.
c. Find its initial state.
d. Find its accepting states.
e. Draw its transition diagram.
8. Next-State Table
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
4. Find the general solution and the definite solution for the following differential equations:
(a)
+10y=15, y(0) = 0;
(b) 2 + 4y = 6, y(0) =
5) For each function represented by an equation, make a table and plot the corresponding
points to sketch the graph of the function.
(a) y = 75 ()*
220
X
y
200-
-2
180
160
-1
140
0
120
100
1
60
80
2
3
4
x
(b) y = 20 ()*
1
60
40
20
20
0
2
3
65-
-1
X
y
60
-2
55-
50
45
44
40
0
35-
30
1
25
2
20
20
15
3
10
5
LO
4
3-2
T
-1
0
5-
4-
-3-
2-
5. Find the solution to each of the following by using an appropriate formula developed in the
lecture slides:
(a) + 3y = 2, y(0) = 4;
(b) dy - 7y = 7, y(0) = 7;
(c) 3d+6y= 5, y(0) = 0
Chapter 12 Solutions
WEBASSIGN F/EPPS DISCRETE MATHEMATICS
Ch. 12.1 - If x and y are strings, the concatenation of x and...Ch. 12.1 - Prob. 2TYCh. 12.1 - Prob. 3TYCh. 12.1 - Prob. 4TYCh. 12.1 - Prob. 5TYCh. 12.1 - Prob. 6TYCh. 12.1 - Prob. 7TYCh. 12.1 - Use of a single dot in a regular expression stands...Ch. 12.1 - Prob. 9TYCh. 12.1 - If r is a regular expression, the notation r +...
Ch. 12.1 - Prob. 11TYCh. 12.1 - Prob. 12TYCh. 12.1 - Prob. 1ESCh. 12.1 - Prob. 2ESCh. 12.1 - Prob. 3ESCh. 12.1 - In 4—6, describe L1L2,L1L2, and (L1L2)*for the...Ch. 12.1 - Prob. 5ESCh. 12.1 - Prob. 6ESCh. 12.1 - Prob. 7ESCh. 12.1 - Prob. 8ESCh. 12.1 - In 7—9, add parentheses to emphasize the order of...Ch. 12.1 - Prob. 10ESCh. 12.1 - In 10—12, use the rules about order of precedence...Ch. 12.1 - Prob. 12ESCh. 12.1 - In 13—15, use set notation to derive the language...Ch. 12.1 - Prob. 14ESCh. 12.1 - Prob. 15ESCh. 12.1 - Prob. 16ESCh. 12.1 - In 16—18, write five strings that belong to the...Ch. 12.1 - Prob. 18ESCh. 12.1 - Prob. 19ESCh. 12.1 - Prob. 20ESCh. 12.1 - In 19—21, use words to describe the language...Ch. 12.1 - Prob. 22ESCh. 12.1 - In 22—24, indicate whether the given strings...Ch. 12.1 - Prob. 24ESCh. 12.1 - Prob. 25ESCh. 12.1 - Prob. 26ESCh. 12.1 - In 25—27, find a regular expression that defines...Ch. 12.1 - Let r, s, and t be regular expressions over...Ch. 12.1 - Prob. 29ESCh. 12.1 - Prob. 30ESCh. 12.1 - Prob. 31ESCh. 12.1 - In 31—39, write a regular expression to define the...Ch. 12.1 - Prob. 33ESCh. 12.1 - Prob. 34ESCh. 12.1 - Prob. 35ESCh. 12.1 - Prob. 36ESCh. 12.1 - Prob. 37ESCh. 12.1 - Prob. 38ESCh. 12.1 - Prob. 39ESCh. 12.1 - Prob. 40ESCh. 12.1 - Write a regular expression to define the set of...Ch. 12.2 - The five objects that make up a finite-state...Ch. 12.2 - The next-state table for an automaton shows the...Ch. 12.2 - In the annotated next-state table, the initial...Ch. 12.2 - A string w consisting of input symbols is accepted...Ch. 12.2 - The language accepted by a finite-state automaton...Ch. 12.2 - If N is the next-stale function for a finite-state...Ch. 12.2 - One part of Kleene’s theorem says that given any...Ch. 12.2 - The second part of Kleene’s theorem says that...Ch. 12.2 - A regular language is .__________Ch. 12.2 - Given the language consisting of all strings of...Ch. 12.2 - Find the state of the vending machine in Example...Ch. 12.2 - Prob. 2ESCh. 12.2 - Prob. 3ESCh. 12.2 - Prob. 4ESCh. 12.2 - Prob. 5ESCh. 12.2 - In 2—7, a finite-state automaton is given by a...Ch. 12.2 - In 2—7, a finite-state automaton is given by a...Ch. 12.2 - In 8 and 9, a finite-state automaton is given by...Ch. 12.2 - In 8 and 9, a finite-state automaton is given by...Ch. 12.2 - A finite-state automaton A given by the transition...Ch. 12.2 - A finite-state automaton A given by the transition...Ch. 12.2 - Prob. 12ESCh. 12.2 - Consider again the finite-state automaton of...Ch. 12.2 - In each of 14—19, (a) find the language accepted...Ch. 12.2 - Prob. 15ESCh. 12.2 - Prob. 16ESCh. 12.2 - Prob. 17ESCh. 12.2 - Prob. 18ESCh. 12.2 - Prob. 19ESCh. 12.2 - In each of 20—28, (a) design an automaton with the...Ch. 12.2 - Prob. 21ESCh. 12.2 - Prob. 22ESCh. 12.2 - Prob. 23ESCh. 12.2 - Prob. 24ESCh. 12.2 - Prob. 25ESCh. 12.2 - Prob. 26ESCh. 12.2 - In each of 20—28, (a) design an automaton with the...Ch. 12.2 - Prob. 28ESCh. 12.2 - Prob. 29ESCh. 12.2 - Prob. 30ESCh. 12.2 - In 29—47, design a finite-state automaton to...Ch. 12.2 - Prob. 32ESCh. 12.2 - Prob. 33ESCh. 12.2 - Prob. 34ESCh. 12.2 - In 29—47, design a finite-state automaton to...Ch. 12.2 - Prob. 36ESCh. 12.2 - Prob. 37ESCh. 12.2 - Prob. 38ESCh. 12.2 - Prob. 39ESCh. 12.2 - Prob. 40ESCh. 12.2 - Prob. 41ESCh. 12.2 - Prob. 42ESCh. 12.2 - Prob. 43ESCh. 12.2 - Prob. 44ESCh. 12.2 - Prob. 45ESCh. 12.2 - In 29—47, design a finite-state automaton to...Ch. 12.2 - Prob. 47ESCh. 12.2 - Prob. 48ESCh. 12.2 - Write a computer algorithm that simulates the...Ch. 12.2 - Prob. 50ESCh. 12.2 - Prob. 51ESCh. 12.2 - Prob. 52ESCh. 12.2 - Prob. 53ESCh. 12.2 - a. Let A be a finite-state automaton with input...Ch. 12.3 - Given a finite-state automaton A with...Ch. 12.3 - Prob. 2TYCh. 12.3 - Given states s and t in a finite-state automaton...Ch. 12.3 - Prob. 4TYCh. 12.3 - Prob. 5TYCh. 12.3 - Consider the finite-state automaton A given by the...Ch. 12.3 - Consider the finite-state automaton A given by the...Ch. 12.3 - Consider the finite-state automaon A discussed in...Ch. 12.3 - Consider the finite-state automaton given by the...Ch. 12.3 - Consider the finite-state automaton given by the...Ch. 12.3 - Consider the finite-state automaton given by the...Ch. 12.3 - Prob. 7ESCh. 12.3 - Prob. 8ESCh. 12.3 - Prob. 9ESCh. 12.3 - Prob. 10ESCh. 12.3 - Prob. 11ESCh. 12.3 - Prob. 12ESCh. 12.3 - Prob. 13ESCh. 12.3 - Prob. 14ESCh. 12.3 - Prob. 15ESCh. 12.3 - Prob. 16ESCh. 12.3 - Prob. 17ESCh. 12.3 - Prob. 18ES
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 1. Evaluate the following improper integrals: (a) fe-rt dt; (b) fert dt; (c) fi da dxarrow_forward8. Given the rate of net investment I(t) = 9t¹/2, find the level of capital formation in (i) 16 years and (ii) between the 4th and the 8th years.arrow_forward9. If the marginal revenue function of a firm in the production of output is MR = 40 - 10q² where q is the level of output, and total revenue is 120 at 3 units of output, find the total revenue function. [Hints: TR = √ MRdq]arrow_forward
- 6. Solve the following first-order linear differential equations; if an initial condition is given, definitize the arbitrary constant: (a) 2 + 12y + 2et = 0, y(0) = /; (b) dy+y=tarrow_forward4. Let A = {a, b, c, d, e, f}, B = {e, f, g, h} and C = {a, e, h,i}. Let U = {a, b, c, d, e, f, g, h, i, j, k}. • Draw a Venn Diagram to describe the relationships between these sets Find (AB) NC • Find (AC) UB Find AUBUC • Find (BC) N (A - C)arrow_forward7. A consumer lives on an island where she produces two goods x and y according to the production possibility frontier x² + y² < 200 and she consumes all the goods. Her utility function is U(x, y) = x y³. She faces an environmental constraint on her total output of both goods. The environmental constraint is given by x + y ≤20. • (a) Write down the consumer's optimization problem. (b) Write out the Kuhn-Tucker first order conditions. (c) Find the consumer's optimal consumption bundle (x*, y*).arrow_forward
- 3. Answer the following questions: (a) Given the marginal propensity to import M'(Y) = 0.1 and the information that M = 20 when Y = 0, find the import function M(Y). (b) Given a continuous income stream at the constant rate of $1,000 per year, what will be the present value II if the income stream terminates after exactly 3 years and the discount rate is 0.04? (c) What is the present value of a perpetual cash flow of $2,460 per year, discounted at r = 8%?arrow_forward5. Let A and B be arbitrary sets. Prove AnB = AUB.arrow_forward2. Answer the following questions: (a) Given the marginal-revenue function R'(Q) = 28Q - €0.3Q, find the total-revenue function R(Q). What initial condition can you introduce to definitize the constant of integration? = (b) Given the marginal propensity to consume C'(Y) 0.80.1Y-1/2 and the information that C = Y when Y = 100, find the consumption function C(Y).arrow_forward
- X GG G + C td.bksblive2.com.au/bksblive2/Play... E R New Chrome available CANVAS gmetrix N notion Six big immigratio... >>> All Bookmarks 1.1 ACSF L5 SC Geometry and Measure: Vectors Vectors State the vector quantities shown on the image below. AB = CD' = A B D < C 80 esc F1 F2 F3 F4 ? Help 7arrow_forward7. Let X, A, and B be arbitrary sets such that ACX and BC X. Prove AUB CX.arrow_forward1. Write out the following sets as a list of elements. If necessary you may use ... in your description. {x EZ: |x|< 10 A x < 0} {x ЄN: x ≤ 20 A x = 2y for some y = N} {n EN: 3 | n^ 1 < n < 20} {y Є Z: y² <0}arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Finite State Machine (Finite Automata); Author: Neso Academy;https://www.youtube.com/watch?v=Qa6csfkK7_I;License: Standard YouTube License, CC-BY
Finite State Machine (Prerequisites); Author: Neso Academy;https://www.youtube.com/watch?v=TpIBUeyOuv8;License: Standard YouTube License, CC-BY