
Single Variable Essential Calculus: Early Transcendentals
2nd Edition
ISBN: 9781133112785
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.2, Problem 12E
Express D as a region of type I and also as a region of type II. Then evaluate the double
14.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
7.10 (B/C). A circular flat plate of diameter 305 mm and thickness 6.35 mm is
clamped at the edges and subjected to a Uniform lateral pressure of 345 kN/m².
Evaluate: (a) the central deflection, (b) the position and magnitude of the
maximum radial stress. C6.1 x 10
m;
149.2 MN/m².]
100
200
3.15 (B). A beam ABCD is simply supported at B and C with ABCD=2m; BC 4 m. It
carries a point load of 60 KN at the free end A, a Uniformly distributed load of 60
KN/m between B and C and an anticlockwise moment of 80 KN m in the plane of
the beam applied at the free end D. Sketch and dimension the S.F. and B.M.
diagrams, and determine the position and magnitude of the maximum bending
moment. CEL.E.] CS.F. 60, 170, 70KN, B.M. 120, +120.1, +80 kNm, 120.1 kNm at 2.83 m to
right of 8.7
7.1 (A/B). A Uniform I-section beam has flanges 150 mm wide by 8 mm thick and a
web 180 mm wide and 8 mm thick. At a certain section there is a shearing force of
120 KN. Draw a diagram to illustrate the distribution of shear stress across the
section as a result of bending. What is the maximum shear stress? [86.7 MN/m².
Chapter 12 Solutions
Single Variable Essential Calculus: Early Transcendentals
Ch. 12.1 - (a) Estimate the volume of the solid that lies...Ch. 12.1 - If R = [0, 4] [1, 2], use a Riemann sum with m =...Ch. 12.1 - (a) Use a Riemann sum with m = n = 2 to estimate...Ch. 12.1 - (a) Estimate the volume of the solid that lies...Ch. 12.1 - A 20-ft-by-30-ft swimming pool is filled with...Ch. 12.1 - A contour map is shown for a function f on the...Ch. 12.1 - 79 Evaluate the double integral by first...Ch. 12.1 - 7-9 Evaluate the double integral by first...Ch. 12.1 - Evaluate the double integral by first identifying...Ch. 12.1 - The integral R9y2dA, where R = [0, 4] [0, 2],...
Ch. 12.1 - Calculate the iterated integral. 15....Ch. 12.1 - Calculate the iterated integral. 12....Ch. 12.1 - 1120 Calculate the iterated integral. 13....Ch. 12.1 - 1120 Calculate the iterated integral. 16....Ch. 12.1 - Calculate the iterated integral. 19....Ch. 12.1 - Calculate the iterated integral. 20. 1315lnyxydydxCh. 12.1 - Calculate the iterated integral. 21....Ch. 12.1 - Calculate the iterated integral. 24....Ch. 12.1 - Calculate the iterated integral. 25....Ch. 12.1 - Calculate the iterated integral. 26. 0101s+tdsdtCh. 12.1 - Calculate the double integral. 28....Ch. 12.1 - Calculate the double integral. 29....Ch. 12.1 - Calculate the double integral. 31....Ch. 12.1 - Prob. 26ECh. 12.1 - Calculate the double integral. 33....Ch. 12.1 - Calculate the double integral. 24....Ch. 12.1 - Sketch the solid whose volume is given by the...Ch. 12.1 - Sketch the solid whose volume is given by the...Ch. 12.1 - Find the volume of the solid that lies under the...Ch. 12.1 - Find the volume of the solid that lies under the...Ch. 12.1 - Find the volume of the solid lying under the...Ch. 12.1 - Find the volume of the solid enclosed by the...Ch. 12.1 - Find the volume of the solid enclosed by the...Ch. 12.1 - Find the volume of the solid in the first octant...Ch. 12.1 - Find the volume of the solid enclosed by the...Ch. 12.1 - Graph the solid that lies between the surface z =...Ch. 12.1 - Find the average value of f over the given...Ch. 12.1 - Find the average value of f over the given...Ch. 12.1 - If f is a constant function, f(x, y) = k, and R =...Ch. 12.1 - Use the result of Exercise 41 to show that...Ch. 12.1 - Use symmetry to evaluate the double integral. 49....Ch. 12.1 - Use symmetry to evaluate the double integral. 50....Ch. 12.1 - Prob. 46ECh. 12.2 - 16 Evaluate the iterated integral. 1. 040yxy2dxdyCh. 12.2 - Evaluate the iterated integral. 2. 012x2(xy)dydxCh. 12.2 - 16 Evaluate the iterated integral. 3....Ch. 12.2 - Evaluate the iterated integral. 2. 02y2yxydxdyCh. 12.2 - Evaluate the iterated integral. 5....Ch. 12.2 - Evaluate the iterated integral. 6. 010ex1+exdwdvCh. 12.2 - 710 Evaluate the double integral. 7....Ch. 12.2 - Evaluate the double integral. 8....Ch. 12.2 - 710 Evaluate the double integral. 9....Ch. 12.2 - Evaluate the double integral. 10....Ch. 12.2 - Express D as a region of type I and also as a...Ch. 12.2 - Express D as a region of type I and also as a...Ch. 12.2 - Set up iterated integrals for both orders of...Ch. 12.2 - Set up iterated integrals for both orders of...Ch. 12.2 - Evaluate the double integral. 17.DxcosydA, D is...Ch. 12.2 - Evaluate the double integral. 18. D(x2+2y)dA, D is...Ch. 12.2 - Evaluate the double integral. 19. Dy2dA, D is the...Ch. 12.2 - Evaluate the double integral. 18....Ch. 12.2 - Prob. 19ECh. 12.2 - 1520 Evaluate the double integral. 20. D2xydA, D...Ch. 12.2 - 2130 Find the volume of the given solid. 21. Under...Ch. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - 2130 Find the volume of the given solid. 25....Ch. 12.2 - Find the volume of the given solid. 28. Bounded by...Ch. 12.2 - Find the volume of the given solid. 29. Enclosed...Ch. 12.2 - Find the volume of the given solid. 30. Bounded by...Ch. 12.2 - Find the volume of the given solid. 31. Bounded by...Ch. 12.2 - Prob. 30ECh. 12.2 - Prob. 31ECh. 12.2 - Prob. 32ECh. 12.2 - Sketch the solid whose volume is given by the...Ch. 12.2 - Sketch the solid whose volume is given by the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Sketch the region of integration and change the...Ch. 12.2 - Prob. 42ECh. 12.2 - Evaluate the integral by reversing the order of...Ch. 12.2 - 43-48 Evaluate the integral by reversing the order...Ch. 12.2 - 4348 Evaluate the integral by reversing the order...Ch. 12.2 - Prob. 46ECh. 12.2 - Evaluate the integral by reversing the order of...Ch. 12.2 - Evaluate the integral by reversing the order of...Ch. 12.2 - Express D as a union of regions of type I or type...Ch. 12.2 - Express D as a union of regions of type I or type...Ch. 12.2 - 5152 Use Property 11 to estimate the value of the...Ch. 12.2 - Use Property 11 to estimate the value of the...Ch. 12.2 - Prove Property 11.Ch. 12.2 - In evaluating a double integral over a region D, a...Ch. 12.2 - Prob. 55ECh. 12.2 - Prob. 56ECh. 12.2 - Prob. 57ECh. 12.2 - Prob. 58ECh. 12.2 - Prob. 59ECh. 12.3 - 14 A region R is shown. Decide whether to use...Ch. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Sketch the region whose area is given by the...Ch. 12.3 - Prob. 6ECh. 12.3 - Evaluate the given integral by changing to polar...Ch. 12.3 - Prob. 8ECh. 12.3 - Evaluate the given integral by changing to polar...Ch. 12.3 - Prob. 10ECh. 12.3 - Prob. 12ECh. 12.3 - Prob. 11ECh. 12.3 - Use a double integral to find the area of the...Ch. 12.3 - Use a double integral to find the area of the...Ch. 12.3 - Prob. 13ECh. 12.3 - Prob. 14ECh. 12.3 - Use polar coordinates to find the volume of the...Ch. 12.3 - Prob. 15ECh. 12.3 - Use polar coordinates to find the volume of the...Ch. 12.3 - 1319 Use polar coordinates to find the volume of...Ch. 12.3 - Use polar coordinates to find the volume of the...Ch. 12.3 - (a) A cylindrical drill with radius r1 is used to...Ch. 12.3 - 2326 Evaluate the iterated integral by converting...Ch. 12.3 - Evaluate the iterated integral by converting to...Ch. 12.3 - 2326 Evaluate the iterated integral by converting...Ch. 12.3 - Evaluate the iterated integral by converting to...Ch. 12.3 - A swimming pool is circular with a 40-ft diameter....Ch. 12.3 - An agricultural sprinkler distributes water in a...Ch. 12.3 - Use polar coordinates to combine the sum...Ch. 12.3 - (a) We define the improper integral (over the...Ch. 12.3 - Use the result of Exercise 30 part (c) to evaluate...Ch. 12.4 - Electric charge is distributed over the rectangle...Ch. 12.4 - Electric charge is distributed over the disk x2 +...Ch. 12.4 - Find the mass and center of mass of the lamina...Ch. 12.4 - Find the mass and center of mass of the lamina...Ch. 12.4 - Find the mass and center of mass of the lamina...Ch. 12.4 - 3-10 Find the mass and center of mass of the...Ch. 12.4 - Find the mass and center of mass of the lamina...Ch. 12.4 - 3-10 Find the mass and center of mass of the...Ch. 12.4 - 310 Find the mass and center of mass of the lamina...Ch. 12.4 - 3-10 Find the mass and center of mass of the...Ch. 12.4 - A lamina occupies the part of the disk x2 + y2 1...Ch. 12.4 - Find the center of mass of the lamina in Exercise...Ch. 12.4 - The boundary of a lamina consists of the...Ch. 12.4 - Find the center of mass of the lamina in Exercise...Ch. 12.4 - Find the center of mass of a lamina in the shape...Ch. 12.4 - A lamina occupies the region inside the circle x2...Ch. 12.4 - Find the moments of inertia Ix, Iy, I0 for the...Ch. 12.4 - Find the moments of inertia Ix, Iy, I0 for the...Ch. 12.4 - Find the moments of inertia Ix, Iy, lo for the...Ch. 12.4 - Consider a square fan blade with sides of length 2...Ch. 12.4 - A lamina with constant density (x, y) = occupies...Ch. 12.4 - A lamina with constant density (x, y) = occupies...Ch. 12.5 - Evaluate the integral in Example 1, integrating...Ch. 12.5 - Evaluate the integral E(xy+z2)dv, where...Ch. 12.5 - Evaluate the iterated integral....Ch. 12.5 - 36 Evaluate the iterated integral. 5....Ch. 12.5 - 00x0xzx2sinydydzdxCh. 12.5 - Evaluate the iterated integral. 6....Ch. 12.5 - Evaluate the triple integral. 9. EydV, where...Ch. 12.5 - Evaluate the triple integral. 10.EezydV, where...Ch. 12.5 - Evaluate the triple integral. 11. Ezx2+z2dV, where...Ch. 12.5 - Evaluate the triple integral. 12. EsinydV, where E...Ch. 12.5 - Evaluate the triple integral. 13. E6xydV, where E...Ch. 12.5 - Prob. 12ECh. 12.5 - 716 Evaluate the triple integral. 13. T x2 dV,...Ch. 12.5 - 7-16 Evaluate the triple integral. 14. TxyzdV,...Ch. 12.5 - Evaluate the triple integral. 17. ExdV, where E is...Ch. 12.5 - Evaluate the triple integral. 18. EzdV, where E is...Ch. 12.5 - Prob. 17ECh. 12.5 - Use a triple integral to find the volume of the...Ch. 12.5 - Use a triple integral to find the volume of the...Ch. 12.5 - Use a triple integral to find the volume of the...Ch. 12.5 - Prob. 23ECh. 12.5 - Prob. 24ECh. 12.5 - Prob. 25ECh. 12.5 - Prob. 26ECh. 12.5 - Express the integralEf(x,y,z)dV, as an iterated...Ch. 12.5 - Prob. 28ECh. 12.5 - Prob. 29ECh. 12.5 - Prob. 30ECh. 12.5 - Prob. 31ECh. 12.5 - Prob. 32ECh. 12.5 - Write five other iterated integrals that are equal...Ch. 12.5 - Prob. 34ECh. 12.5 - Prob. 35ECh. 12.5 - Prob. 36ECh. 12.5 - 3740 Find the mass and center of mass of the solid...Ch. 12.5 - Prob. 38ECh. 12.5 - Prob. 39ECh. 12.5 - Prob. 40ECh. 12.5 - Prob. 45ECh. 12.5 - Prob. 46ECh. 12.5 - Prob. 47ECh. 12.5 - Prob. 48ECh. 12.5 - Prob. 41ECh. 12.5 - Prob. 42ECh. 12.5 - Prob. 44ECh. 12.5 - Prob. 49ECh. 12.5 - Prob. 50ECh. 12.6 - Plot the point whose cylindrical coordinates are...Ch. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - Prob. 5ECh. 12.6 - Prob. 6ECh. 12.6 - 78 Identify the surface whose equation is given....Ch. 12.6 - Prob. 8ECh. 12.6 - Prob. 9ECh. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - Prob. 12ECh. 12.6 - Prob. 13ECh. 12.6 - Prob. 14ECh. 12.6 - Sketch the solid whose volume is given by the...Ch. 12.6 - Sketch the solid whose volume is given by the...Ch. 12.6 - Use cylindrical coordinates. 17. Evaluate...Ch. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - 21-32 Use spherical coordinates. 20. Evaluate...Ch. 12.6 - Use cylindrical coordinates. 21. Evaluate Ex2dV,...Ch. 12.6 - Prob. 22ECh. 12.6 - Use cylindrical coordinates. 23. Find the volume...Ch. 12.6 - Prob. 24ECh. 12.6 - 1728 Use cylindrical coordinates. 25. (a) Find the...Ch. 12.6 - Use cylindrical coordinates. 26. (a) Find the...Ch. 12.6 - Use cylindrical coordinates. 27. Find the mass and...Ch. 12.6 - Use cylindrical coordinates. 28. Find the mass of...Ch. 12.6 - Evaluate the integral by changing to cylindrical...Ch. 12.6 - Prob. 30ECh. 12.6 - Prob. 31ECh. 12.7 - Prob. 1ECh. 12.7 - Prob. 2ECh. 12.7 - Prob. 3ECh. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - 78 Identify the surface whose equation is given....Ch. 12.7 - Identify the surface whose equation is given. 8. ...Ch. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.7 - 1114 Sketch the solid described by the given...Ch. 12.7 - Sketch the solid described by the given...Ch. 12.7 - 1112 Sketch the solid described by the given...Ch. 12.7 - Sketch the solid described by the given...Ch. 12.7 - A solid lies above the cone z = x2+y2 and below...Ch. 12.7 - Prob. 16ECh. 12.7 - Prob. 17ECh. 12.7 - Sketch the solid whose volume is given by the...Ch. 12.7 - Prob. 19ECh. 12.7 - Prob. 20ECh. 12.7 - Use spherical coordinates. 21. Evaluate B (x2+y2 +...Ch. 12.7 - 21-32 Use spherical coordinates. 22. Evaluate...Ch. 12.7 - Prob. 23ECh. 12.7 - 21-32 Use spherical coordinates. 24. Evaluate...Ch. 12.7 - Use spherical coordinates. 25. Evaluate E xe x2 +...Ch. 12.7 - Prob. 26ECh. 12.7 - Use spherical coordinates. 29. (a) Find the volume...Ch. 12.7 - Use spherical coordinates. 30. Find the volume of...Ch. 12.7 - Prob. 29ECh. 12.7 - Use spherical coordinates. 32. Let H be a solid...Ch. 12.7 - Prob. 31ECh. 12.7 - Use spherical coordinates. 34. Find the mass and...Ch. 12.7 - Use cylindrical or spherical coordinates,...Ch. 12.7 - Use cylindrical or spherical coordinates,...Ch. 12.7 - Evaluate the integral by changing to spherical...Ch. 12.7 - Evaluate the integral by changing to spherical...Ch. 12.7 - Evaluate the integral by changing to spherical...Ch. 12.7 - A model for the density of the earths atmosphere...Ch. 12.7 - Use a graphing device to draw a silo consisting of...Ch. 12.7 - Prob. 42ECh. 12.7 - Show that x2+y2+z2e-(x2+y2+z2) dx dy dz = 2 (The...Ch. 12.7 - Prob. 45ECh. 12.8 - 16 Find the Jacobian of the transformation. 1. x =...Ch. 12.8 - Find the Jacobian of the transformation. 2. x =...Ch. 12.8 - 16 Find the Jacobian of the transformation. 3. x =...Ch. 12.8 - Find the Jacobian of the transformation. 4. x =...Ch. 12.8 - 16 Find the Jacobian of the transformation. 5. x =...Ch. 12.8 - Find the Jacobian of the transformation. 6. x = v...Ch. 12.8 - Find the image of the set S under the given...Ch. 12.8 - Find the image of the set S under the given...Ch. 12.8 - Find the image of the set S under the given...Ch. 12.8 - Find the image of the set S under the given...Ch. 12.8 - A region R in the xy-plane is given. Find...Ch. 12.8 - Prob. 12ECh. 12.8 - A region R in the xy-plane is given. Find...Ch. 12.8 - A region R in the xy-plane is given. Find...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - Use the given transformation to evaluate the...Ch. 12.8 - (a) Evaluate E dV, where E is the solid enclosed...Ch. 12.8 - An important problem in thermodynamics is to find...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Evaluate the integral by making an appropriate...Ch. 12.8 - Let f be continuous oil [0, 1] and letRbe the...Ch. 12 - Prob. 1RCCCh. 12 - Prob. 2RCCCh. 12 - Prob. 3RCCCh. 12 - Prob. 4RCCCh. 12 - Prob. 7RCCCh. 12 - Prob. 5RCCCh. 12 - Suppose a solid object occupies the region E and...Ch. 12 - Prob. 8RCCCh. 12 - (a) If a transformation T is given by x = g(u, v),...Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - Determine whether the statement is true or false....Ch. 12 - A contour map is shown for a function f on the...Ch. 12 - Use the Midpoint Rule to estimate the integral in...Ch. 12 - Calculate the iterated integral. 3....Ch. 12 - Calculate the iterated integral. 4. 0101yexydxdyCh. 12 - Calculate the iterated integral. 5....Ch. 12 - Calculate the iterated integral. 6. 01xex3xy2dydxCh. 12 - Calculate the iterated integral. 7....Ch. 12 - Calculate the iterated integral. 8....Ch. 12 - Write Rf(x,y)dA as an iterated integral, where R...Ch. 12 - Write Rf(x,y)dA as an iterated integral, where R...Ch. 12 - Prob. 39RECh. 12 - Prob. 40RECh. 12 - Prob. 41RECh. 12 - Prob. 42RECh. 12 - Prob. 43RECh. 12 - Prob. 44RECh. 12 - Describe the region whose area is given by the...Ch. 12 - Prob. 12RECh. 12 - Prob. 13RECh. 12 - Prob. 14RECh. 12 - Prob. 15RECh. 12 - Prob. 16RECh. 12 - Prob. 17RECh. 12 - Prob. 18RECh. 12 - Prob. 19RECh. 12 - Prob. 20RECh. 12 - Prob. 21RECh. 12 - Prob. 22RECh. 12 - Prob. 23RECh. 12 - Prob. 24RECh. 12 - Prob. 25RECh. 12 - Prob. 26RECh. 12 - Prob. 27RECh. 12 - Prob. 28RECh. 12 - Prob. 29RECh. 12 - Prob. 30RECh. 12 - Prob. 31RECh. 12 - Prob. 32RECh. 12 - Prob. 33RECh. 12 - Prob. 34RECh. 12 - Prob. 35RECh. 12 - Prob. 36RECh. 12 - Prob. 37RECh. 12 - Use polar coordinates to evaluate...Ch. 12 - Use spherical coordinates to evaluate...Ch. 12 - Rewrite the integral 11x2101yf(x,y,z)dzdydxas an...Ch. 12 - Prob. 48RECh. 12 - Use the transformation u = x y, v = x + y to...Ch. 12 - Use the transformation x = u2, y = v2 z = w2 to...Ch. 12 - Use the change of variables formula and an...Ch. 12 - Prob. 52RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 1. Let Ả = −2x + 3y+42, B = - - 7x +lý +22, and C = −1x + 2y + 42. Find (a) Ả X B (b) ẢX B°C c) →→ Ả B X C d) ẢB°C e) ẢX B XC.arrow_forward3.13 (B). A beam ABC, 6 m long, is simply-supported at the left-hand end A and at B I'm from the right-hand end C. The beam is of weight 100 N/metre run. (a) Determine the reactions at A and B. (b) Construct to scales of 20 mm = 1 m and 20 mm = 100 N, the shearing-force diagram for the beam, indicating thereon the principal values. (c) Determine the magnitude and position of the maximum bending moment. (You may, if you so wish, deduce the answers from the shearing force diagram without constructing a full or partial bending-moment diagram.) [C.G.] C240 N, 360 N, 288 Nm, 2.4 m from A.]arrow_forward5. Using parentheses make sense of the expression V · VXVV · Å where Ả = Ã(x, y, z). Is the result a vector or a scaler?arrow_forward
- 3.10 (A/B). A beam ABCDE is simply supported at A and D. It carries the following loading: a distributed load of 30 kN/m between A and B, a concentrated load of 20 KN at B, a concentrated load of 20 KN at C, a concentrated load of 10 KN at E; a distributed load of 60 kN/m between 0 and E. Span AB = 1.5 BC = CD = DE 1 m. Calculate the value of the reactions at A and D and hence draw the S.F. and B.M. diagrams. What are the magnitude and position of the maximum B.M. on the beam? [41.1, 113.9 KN, 28.15 kNm; 1.37 m from A.J m,arrow_forward3.14 (B). A beam ABCD, 6 m long, is simply-supported at the right-hand end and at a point B Im from the left-hand end A. It carries a vertical load of 10 KN at A, a second concentrated load of 20 KN at C, 3 m from D, and a uniformly distributed load of 10 kN/m between C and D. Determine: (a) the values of the reactions at B and 0, (6) the position and magnitude of the maximum bending moment. [33 KN, 27 KN, 2.7 m from D, 36.45k Nm.]arrow_forward3.17 (B). A simply supported beam has a span of 6 m and carries a distributed load which varies in a linea manner from 30 kN/m at one support to 90 kN/m at the other support. Locate the point of maximum bendin moment and calculate the value of this maximum. Sketch the S.F. and B.M. diagrams. [U.L.] [3.25 m from l.h. end; 272 KN m 30. 90arrow_forward
- 3.11 (B). A beam, 12 m long, is to be simply supported at 2m from each end and to carry a U.d.l of 30kN/m together with a 30 KN point load at the right-hand end. For ease of transportation the beam is to be jointed in two places, one joint being Situated 5 m from the left-hand end. What load (to the nearest KN) must be applied to the left-hand end to ensure that there is no B.M. at the joint (i.e. the joint is to be a point of contraflexure)? What will then be the best position on the beam for the other joint? Determine the position and magnitude of the maximum B.M. present on the beam. [114 KN, 1.6 m from r.h. reaction; 4.7 m from 1.h. reaction; 43.35 KN m.]arrow_forward2. Using vector algebraic operations, if - Ả = 2ây – mây – C - B = mây tây – 2, C = ây + mây + 20, D = m x + mây tậ Z Find the value(s) of m such that (a) Ả is perpendicular to B (b) B is parallel to Carrow_forward1. Determine whether the following sets are subspaces of $\mathbb{R}^3$ under the operations of addition and scalar multiplication defined on $\mathbb{R}^3$. Justify your answers.(a) $W_1=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1=3 a_2\right.$ and $\left.a_3=\mid a_2\right\}$(b) $W_2=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1=a_3+2\right\}$(c) $W_3=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: 2 a_1-7 a_2+a_3=0\right\}$(d) $W_4=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1-4 a_2-a_3=0\right\}$(e) $W_s=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1+2 a_2-3 a_3=1\right\}$(f) $W_6=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: 5 a_1^2-3 a_2^2+6 a_3^2=0\right\}$arrow_forward
- 3 Evaluate the double integral 10 y√x dy dx. First sketch the area of the integral involved, then carry out the integral in both ways, first over x and next over y, and vice versa.arrow_forwardQuestion 2. i. Suppose that the random variable X takes two possible values 1 and -1, and P(X = 1) = P(X-1)=1/2. Let Y=-X. Are X and Y the same random variable? Do X and Y have the same distribution? Explain your answer. ii. Suppose that the random variable X~N(0, 1), let Y=-X. Are X and Y the same random variable? Do X and Y have the same distribution? Explain your answer.arrow_forwardProblem 4. Let f(x, y) = { Find P(X <1/2|Y = 1/2). c(x + y²) 0arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Double and Triple Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=UubU3U2C8WM;License: Standard YouTube License, CC-BY