Problem Solving Approach to Mathematics for Elementary School Teachers
13th Edition
ISBN: 9780135184097
Author: BILLSTEIN
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.1, Problem 22MC
Zara claims that in spite of the fact that every triangle is congruent to itself, the statement
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answers
What is a solution to a differential equation? We said that a differential equation is an equation that
describes the derivative, or derivatives, of a function that is unknown to us. By a solution to a differential
equation, we mean simply a function that satisfies this description.
2. Here is a differential equation which describes an unknown position function s(t):
ds
dt
318
4t+1,
ds
(a) To check that s(t) = 2t2 + t is a solution to this differential equation, calculate
you really do get 4t +1.
and check that
dt'
(b) Is s(t) = 2t2 +++ 4 also a solution to this differential equation?
(c) Is s(t)=2t2 + 3t also a solution to this differential equation?
ds
1
dt
(d) To find all possible solutions, start with the differential equation = 4t + 1, then move dt to the
right side of the equation by multiplying, and then integrate both sides. What do you get?
(e) Does this differential equation have a unique solution, or an infinite family of solutions?
these are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.
Chapter 12 Solutions
Problem Solving Approach to Mathematics for Elementary School Teachers
Ch. 12.1 - Can you construct a triangle using the lengths...Ch. 12.1 - A triangle has two sides of length 10cm and 14cm....Ch. 12.1 - For the Figure below, answer the following Point C...Ch. 12.1 - In a circle with centre A and radius AB, let P be...Ch. 12.1 - In the following kite, congruent segments are...Ch. 12.1 - If the kite in exercise 5 were concave, do the...Ch. 12.1 - a. Are all rectangles whose diagonals are 19in....Ch. 12.1 - Explain why the quadrilateral ABCD is a kite.Ch. 12.1 - To draw the perpendicular to a line l through a...Ch. 12.1 - In the following drawing a compass is used to draw...
Ch. 12.1 - Prob. 11MCCh. 12.1 - a. find examples of congruent objects. c. Find...Ch. 12.1 - Prob. 13MCCh. 12.1 - Prob. 14MCCh. 12.1 - Prob. 15MCCh. 12.1 - Squares are constructed on the sides of ABC as...Ch. 12.1 - Prove that the triangles shown below on 55 dot...Ch. 12.1 - Prob. 18MCCh. 12.1 - A student claims that all squares are congruent...Ch. 12.1 - Joel claims that the following triangles are...Ch. 12.1 - On a test, a student wrote the answer as ABCD...Ch. 12.1 - Zara claims that in spite of the fact that every...Ch. 12.1 - Prob. 1NAEPCh. 12.1 - Which two figures are congruent? a. E and H b. F...Ch. 12.1 - Prob. 3NAEPCh. 12.1A - If CATDOG, which of the following, if any, is...Ch. 12.1A - In TRI and ABC, TRAB, RIBC, and ITCA. Which angle...Ch. 12.1A - a. Name two congruent triangles in the following...Ch. 12.1A - A truss used in house construction to strengthen...Ch. 12.1A - Prob. 5ACh. 12.1A - Prob. 6ACh. 12.1A - If line l is the perpendicular bisector of AC,...Ch. 12.1A - Prob. 8ACh. 12.1A - Prob. 9ACh. 12.1A - Prob. 10ACh. 12.1A - Prob. 11ACh. 12.1A - Prob. 12ACh. 12.1A - Prob. 14ACh. 12.1A - Prob. 15ACh. 12.1A - Prob. 16ACh. 12.1A - Prob. 18ACh. 12.1A - Prob. 20ACh. 12.1B - Prob. 1ACh. 12.1B - Prob. 2ACh. 12.1B - Prob. 3ACh. 12.1B - Prob. 4ACh. 12.1B - Prove that if the convex quadrilateral ABCD has...Ch. 12.1B - Find the measure of C in the following figure.Ch. 12.1B - Given that polygon ABCD polygon EFGH, complete the...Ch. 12.1B - Prob. 8ACh. 12.1B - For each of the following, determine whether the...Ch. 12.1B - Prob. 10ACh. 12.1B - Prob. 11ACh. 12.1B - Prob. 13ACh. 12.1B - Prob. 14ACh. 12.1B - Let ABCD be a square with diagonals AC and BD...Ch. 12.1B - Prob. 19ACh. 12.2 - MATHEMATICAL CONNECTIONS a. If you know 4 parts...Ch. 12.2 - Prob. 2MCCh. 12.2 - Prob. 3MCCh. 12.2 - Prob. 4MCCh. 12.2 - Prob. 5MCCh. 12.2 - Prob. 6MCCh. 12.2 - MATHEMATICAL CONNECTIONS Use the fact that the...Ch. 12.2 - MATHEMATICAL CONNECTIONS The marked angles and a...Ch. 12.2 - Prob. 10MCCh. 12.2 - MATHEMATICAL CONNECTIONS On a square geoboard or...Ch. 12.2 - MATHEMATICAL CONNECTIONS M and N are midpoints of...Ch. 12.2 - Prob. 13MCCh. 12.2 - Prob. 14MCCh. 12.2 - MATHEMATICAL CONNECTIONS A student asks why...Ch. 12.2 - Prob. 16MCCh. 12.2 - Prob. 17MCCh. 12.2 - Prob. 18MCCh. 12.2 - In the following regular pentagon, use the...Ch. 12.2 - If possible, construct a triangle that has the...Ch. 12.2 - MATHEMATICAL CONNECTIONS Construct an equilateral...Ch. 12.2 - MATHEMATICAL CONNECTIONS For each of the following...Ch. 12.2 - Mathematical Connections Explain how to construct...Ch. 12.2 - National Assessment of Educational Progress Sara...Ch. 12.2A - Draw each of the following figures using a...Ch. 12.2A - ASSESSMENT For each of the conditions in exercise...Ch. 12.2A - ASSESSMENT For each of the following, determine...Ch. 12.2A - Prob. 4ACh. 12.2A - List congruent triangles, if any, for each of the...Ch. 12.2A - Prob. 6ACh. 12.2A - If ABCDEF and ABC is given with the information...Ch. 12.2A - Prob. 8ACh. 12.2A - Given ADEC and BDBC, Prove ABDEBC.Ch. 12.2A - Prob. 10ACh. 12.2A - Prob. 11ACh. 12.2A - Prob. 12ACh. 12.2A - ASSESSMENT Classify each of the following...Ch. 12.2A - Prob. 15ACh. 12.2A - Prob. 16ACh. 12.2A - The game of Triominoes has equilateral-triangular...Ch. 12.2A - ASSESSMENT In the rectangle ABCD shown, X and Y...Ch. 12.2A - Prob. 20ACh. 12.2A - Prob. 21ACh. 12.2A - ASSESSMENT What minimum information is sufficient...Ch. 12.2A - Prob. 24ACh. 12.2B - Assessment Draw each of the following figures...Ch. 12.2B - Prob. 3ACh. 12.2B - Prob. 4ACh. 12.2B - Prob. 6ACh. 12.2B - ASSESSMENT Given circle O in the figure below,...Ch. 12.2B - Prob. 8ACh. 12.2B - Prob. 9ACh. 12.2B - Prob. 10ACh. 12.2B - Prob. 11ACh. 12.2B - Prob. 12ACh. 12.2B - ASSESSMENT a. Draw a pentagon with all sides...Ch. 12.2B - Prob. 15ACh. 12.2B - Prob. 16ACh. 12.2B - Prob. 17ACh. 12.2B - Prob. 18ACh. 12.2B - ASSESSMENT What minimum information sufficient to...Ch. 12.2B - Prob. 21ACh. 12.2B - Prob. 22ACh. 12.3 - Mathematical Connections Draw a line l and a point...Ch. 12.3 - Prob. 2MCCh. 12.3 - Mathematical Connections Construct a circle O and...Ch. 12.3 - Mathematical Connections Place three dots, A,B and...Ch. 12.3 - Mathematical Connections Lines l and m intersect...Ch. 12.3 - Mathematical Connections Given an angle and a roll...Ch. 12.3 - Mathematical Connections If two pieces of tape of...Ch. 12.3 - MATHEMATICAL CONNECTIONS Write a sample letter...Ch. 12.3 - MATHEMATICAL CONNECTIONS A student asked if a line...Ch. 12.3 - MATHEMATICAL CONNECTIONS A student wants to know...Ch. 12.3 - Mathematical Connections In the following figure,...Ch. 12.3 - Mathematical Connections Draw ABC. Then construct...Ch. 12.3 - Mathematical Connections Given two right...Ch. 12.3 - Mathematical Connections Find the value of x.Ch. 12.3 - MATHEMATICAL CONNECTIONS Consider ABC and DEF. It...Ch. 12.3 - Mathematical Connections The quadrilaterals shown...Ch. 12.3 - Mathematical Connections In figure, congruent...Ch. 12.3 - Mathematical Connections In the figure, OP is the...Ch. 12.3A - Prob. 2ACh. 12.3A - Prob. 3ACh. 12.3A - Prob. 4ACh. 12.3A - Prob. 5ACh. 12.3A - Prob. 6ACh. 12.3A - Prob. 7ACh. 12.3A - Prob. 8ACh. 12.3A - Prob. 9ACh. 12.3A - Prob. 10ACh. 12.3A - Prob. 11ACh. 12.3A - Prob. 12ACh. 12.3A - Prob. 13ACh. 12.3A - Prob. 14ACh. 12.3A - Use compass and straightedge to construct angles...Ch. 12.3A - Construct AB close to the bottom of a blank page....Ch. 12.3A - Prob. 18ACh. 12.3A - Construct a circle. Then construct an equilateral...Ch. 12.3B - Assessment Copy line segment AB shown below and...Ch. 12.3B - Assessment Construct an obtuse triangle and the...Ch. 12.3B - Prob. 5ACh. 12.3B - Prob. 6ACh. 12.3B - Prob. 7ACh. 12.3B - Prob. 8ACh. 12.3B - Prob. 10ACh. 12.3B - Assessment In the isosceles right triangle shown,...Ch. 12.3B - Prob. 12ACh. 12.3B - ASSESSMENT Explain why any rectangle can be...Ch. 12.3B - Prob. 14ACh. 12.3B - Prob. 15ACh. 12.3B - Prob. 16ACh. 12.4 - Do you think any two cubes are similar?Ch. 12.4 - Write a description of what it takes for two...Ch. 12.4 - If two isosceles triangle have non-base angles of...Ch. 12.4 - If two right triangles have hypotenuses that are...Ch. 12.4 - Prob. 5MCCh. 12.4 - Prob. 6MCCh. 12.4 - Prob. 7MCCh. 12.4 - Prob. 8MCCh. 12.4 - Prob. 9MCCh. 12.4 - How are the SSS and SAS similarity thoerems like...Ch. 12.4 - Prob. 11MCCh. 12.4 - Prob. 12MCCh. 12.4 - Prob. 13MCCh. 12.4 - Prob. 14MCCh. 12.4 - Prob. 15MCCh. 12.4 - Prob. 16MCCh. 12.4 - Arthuro writes that ABCTRI. Betty writes that...Ch. 12.4 - Prob. 18MCCh. 12.4 - Prob. 19MCCh. 12.4 - Prob. 20MCCh. 12.4 - Prob. 21MCCh. 12.4 - A student asks whether there is an ASA similarity...Ch. 12.4 - Prob. 1NAEPCh. 12.4 - Prob. 2NAEPCh. 12.4A - Prob. 1ACh. 12.4A - Prob. 2ACh. 12.4A - Prob. 3ACh. 12.4A - Prob. 4ACh. 12.4A - Prob. 5ACh. 12.4A - Prob. 7ACh. 12.4A - Prob. 8ACh. 12.4A - Prob. 9ACh. 12.4A - Prob. 10ACh. 12.4A - Prob. 11ACh. 12.4A - A photocopy of a polygon was reduced by 80 and...Ch. 12.4A - Sketch two hexagons with corresponding sides...Ch. 12.4A - Prob. 15ACh. 12.4A - Prob. 16ACh. 12.4A - In the following figure, find the distance AB...Ch. 12.4A - Prob. 18ACh. 12.4A - Prob. 19ACh. 12.4A - a. Examine several examples of similar polygons...Ch. 12.4A - The midpoints M,N,P,Q of the sides of a...Ch. 12.4A - Prob. 22ACh. 12.4A - Prob. 23ACh. 12.4B - School pictures come in 8in.by10in., 5in.by7in....Ch. 12.4B - Prob. 2ACh. 12.4B - Prob. 4ACh. 12.4B - Prob. 5ACh. 12.4B - Prob. 9ACh. 12.4B - Prob. 12ACh. 12.4B - Prob. 13ACh. 12.4B - Prob. 14ACh. 12.4B - To find the height of a tree, a group of Girl...Ch. 12.4B - Prob. 17ACh. 12.4B - Prob. 18ACh. 12.4B - Prob. 19ACh. 12.4B - Prob. 20ACh. 12.4B - a. In the figure, ABCD is a trapezoid, M is the...Ch. 12.4B - ABCD is a convex quadrilateral and M,N,P,Q are the...Ch. 12.4B - Prob. 23ACh. 12.4B - Prob. 24ACh. 12.CR - Each of the following figures contains at least...Ch. 12.CR - Prob. 2CRCh. 12.CR - Prob. 3CRCh. 12.CR - Prob. 4CRCh. 12.CR - Prob. 5CRCh. 12.CR - Prob. 6CRCh. 12.CR - Prob. 7CRCh. 12.CR - Prob. 8CRCh. 12.CR - Prob. 9CRCh. 12.CR - Prob. 10CRCh. 12.CR - A swimming pool is shown with a rectangular patio...Ch. 12.CR - Prob. 12CRCh. 12.CR - Prob. 13CRCh. 12.CR - Prob. 14CRCh. 12.CR - Prob. 15CRCh. 12.CR - Determine the vertical height of playground slide...Ch. 12.CR - Prob. 17CRCh. 12.CR - Prob. 18CRCh. 12.CR - Prob. 19CRCh. 12.CR - Prob. 20CRCh. 12.CR - Prob. 21CRCh. 12.CR - Prob. 22CRCh. 12.CR - Prob. 23CRCh. 12.CR - In real estate, lots that have more ocean frontage...Ch. 12 - Prob. 1NTCh. 12 - Prob. 2NTCh. 12 - Prob. 3NTCh. 12 - Prob. 4NTCh. 12 - Prob. 5NTCh. 12 - Are all right triangles in which the hypotenuse is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Q1) Classify the following statements as a true or false statements a. Any ring with identity is a finitely generated right R module.- b. An ideal 22 is small ideal in Z c. A nontrivial direct summand of a module cannot be large or small submodule d. The sum of a finite family of small submodules of a module M is small in M A module M 0 is called directly indecomposable if and only if 0 and M are the only direct summands of M f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct- summand in M & Z₂ contains no minimal submodules h. Qz is a finitely generated module i. Every divisible Z-module is injective j. Every free module is a projective module Q4) Give an example and explain your claim in each case a) A module M which has two composition senes 7 b) A free subset of a modale c) A free module 24 d) A module contains a direct summand submodule 7, e) A short exact sequence of modules 74.arrow_forward************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.arrow_forwardProve that Σ prime p≤x p=3 (mod 10) 1 Ρ = for some constant A. log log x + A+O 1 log x "arrow_forward
- Prove that, for x ≥ 2, d(n) n2 log x = B ― +0 X (금) n≤x where B is a constant that you should determine.arrow_forwardProve that, for x ≥ 2, > narrow_forwardI need diagram with solutionsarrow_forwardT. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forwardQ.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forward1 2 21. For the matrix A = 3 4 find AT (the transpose of A). 22. Determine whether the vector @ 1 3 2 is perpendicular to -6 3 2 23. If v1 = (2) 3 and v2 = compute V1 V2 (dot product). .arrow_forward7. Find the eigenvalues of the matrix (69) 8. Determine whether the vector (£) 23 is in the span of the vectors -0-0 and 2 2arrow_forward1. Solve for x: 2. Simplify: 2x+5=15. (x+3)² − (x − 2)². - b 3. If a = 3 and 6 = 4, find (a + b)² − (a² + b²). 4. Solve for x in 3x² - 12 = 0. -arrow_forward5. Find the derivative of f(x) = 6. Evaluate the integral: 3x3 2x²+x— 5. - [dz. x² dx.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
What are the Different Types of Triangles? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=1k0G-Y41jRA;License: Standard YouTube License, CC-BY
Law of Sines AAS, ASA, SSA Ambiguous Case; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=FPVGb-yWj3s;License: Standard YouTube License, CC-BY
Introduction to Statistics..What are they? And, How Do I Know Which One to Choose?; Author: The Doctoral Journey;https://www.youtube.com/watch?v=HpyRybBEDQ0;License: Standard YouTube License, CC-BY
Triangles | Mathematics Grade 5 | Periwinkle; Author: Periwinkle;https://www.youtube.com/watch?v=zneP1Q7IjgQ;License: Standard YouTube License, CC-BY
What Are Descriptive Statistics And Inferential Statistics?; Author: Amour Learning;https://www.youtube.com/watch?v=MUyUaouisZE;License: Standard Youtube License